
Theorem Proving via Machine Learning

Kaiyu Yang
Postdoc @ Computing + Mathematical Sciences

Computer-Aided Proofs in Mathematics

Theorem Proving via Machine Learning - Kaiyu Yang 1

Four Color Theorem
Use computers to check 1000+ configurations

[Appel and Haken, "Every Planar Map Is Four Colorable", 1976]

Computer-Aided Proofs in Mathematics

Theorem Proving via Machine Learning - Kaiyu Yang 2

Blowup of the Euler Equations
Computers calculate bounds of integrals

[Chen and Thomas, "Stable Nearly Self-similar Blowup Of The 2D
Boussinesq And 3D Euler Equations With Smooth Data", 2022]

Four Color Theorem
Computers check 1000+ configurations

[Appel and Haken, "Every Planar Map Is Four Colorable", 1976]

3

Automated Theorem Proving

1 + 2 +⋯+ 𝑛 =
𝑛 + 1 𝑛
2 • Generate the proof fully automatically

Theorem Proving via Machine Learning - Kaiyu Yang

4

Automated Theorem Proving

1 + 2 +⋯+ 𝑛 =
𝑛 + 1 𝑛
2

¬𝑞⋁𝑝⋁¬𝑟

𝑞⋁¬𝑥⋁𝑦

Conjunctive normal form (CNF)

• Generate the proof fully automatically
• Low-level: First-order logic, CNFs, and resolution

Theorem Proving via Machine Learning - Kaiyu Yang

5

Automated Theorem Proving

1 + 2 +⋯+ 𝑛 =
𝑛 + 1 𝑛
2

¬𝑞⋁𝑝⋁¬𝑟

𝑞⋁¬𝑥⋁𝑦

𝑝⋁¬𝑟⋁¬𝑥⋁𝑦

Conjunctive normal form (CNF)

Resolution

• Generate the proof fully automatically
• Low-level: First-order logic, CNFs, and resolution

Theorem Proving via Machine Learning - Kaiyu Yang

6

Automated Theorem Proving

1 + 2 +⋯+ 𝑛 =
𝑛 + 1 𝑛
2

¬𝑞⋁𝑝⋁¬𝑟

𝑞⋁¬𝑥⋁𝑦

𝑝⋁¬𝑟⋁¬𝑥⋁𝑦
…

Conjunctive normal form (CNF)

• Generate the proof fully automatically
• Low-level: First-order logic, CNFs, and resolution

Theorem Proving via Machine Learning - Kaiyu Yang

7

Automated Theorem Proving

1 + 2 +⋯+ 𝑛 =
𝑛 + 1 𝑛
2

¬𝑞⋁𝑝⋁¬𝑟

𝑞⋁¬𝑥⋁𝑦

𝑝⋁¬𝑟⋁¬𝑥⋁𝑦
…

…

Conjunctive normal form (CNF)

• Generate the proof fully automatically
• Low-level: First-order logic, CNFs, and resolution

Theorem Proving via Machine Learning - Kaiyu Yang

8

Automated Theorem Proving

1 + 2 +⋯+ 𝑛 =
𝑛 + 1 𝑛
2

¬𝑞⋁𝑝⋁¬𝑟

𝑞⋁¬𝑥⋁𝑦

𝑝⋁¬𝑟⋁¬𝑥⋁𝑦
…

…

∅

Conjunctive normal form (CNF)

• Generate the proof fully automatically
• Low-level: First-order logic, CNFs, and resolution

Theorem Proving via Machine Learning - Kaiyu Yang

9

Automated Theorem Proving

1 + 2 +⋯+ 𝑛 =
𝑛 + 1 𝑛
2

¬𝑞⋁𝑝⋁¬𝑟

𝑞⋁¬𝑥⋁𝑦

𝑝⋁¬𝑟⋁¬𝑥⋁𝑦
…

…

∅

[Haken, “The Intractability of Resolution”, Theoretical Computer Science, 1985]

• Generate the proof fully automatically
• Low-level: First-order logic, CNFs, and resolution
• Main challenge: Large search space

• Heuristics for pruning the search space
 [Kovács and Voronkov, CAV 2013] [Urban et al. TABLEAUX 2011]
 [Schulz et al. CADE 2019]. [Loos et al. LPAR-21]
 [Korovin, IJCAR 2008] [Kaliszyk et al. NeurIPS 2018]

• Successful examples: Robbins Conjecture

• Intractable for most theorems
Conjunctive normal form (CNF)

[McCune, “Solution of the Robbins Problem”, 1997]

Theorem Proving via Machine Learning - Kaiyu Yang

10

Automated Theorem Proving

1 + 2 +⋯+ 𝑛 =
𝑛 + 1 𝑛
2

¬𝑞⋁𝑝⋁¬𝑟

𝑞⋁¬𝑥⋁𝑦

𝑝⋁¬𝑟⋁¬𝑥⋁𝑦
…

…

∅

[Haken, “The Intractability of Resolution”, Theoretical Computer Science, 1985]

• Generate the proof fully automatically
• Low-level: First-order logic, CNFs, and resolution
• Main challenge: Large search space

• Heuristics for pruning the search space
 [Kovács and Voronkov, CAV 2013] [Urban et al. TABLEAUX 2011]
 [Schulz et al. CADE 2019]. [Loos et al. LPAR-21]
 [Korovin, IJCAR 2008] [Kaliszyk et al. NeurIPS 2018]

• Successful examples: Robbins Conjecture

• Intractable for most theorems in math
• Lack high-level intuitions of mathematiciansConjunctive normal form (CNF)

[McCune, “Solution of the Robbins Problem”, 1997]

Theorem Proving via Machine Learning - Kaiyu Yang

Theorem Proving in Proof Assistants

11

Proof assistant

Theorem Proving via Machine Learning - Kaiyu Yang

prelude
import init.data.nat.lemmas init.meta.well_founded_tactics

namespace nat

/-
t h e o r e m m o d _ s e l f (n : n a t) : n % n = 0 : =
b e g i n

r w [m o d _ e q _ s u b _ m o d (l e _ r e f l _) , n a t . s u b _ s e l f , z e r o _ m o d]
e n d
-/

def gcd : nat → nat → nat
| 0 y := y
| (x + 1) y := have y % (x + 1) < x + 1, from mod_lt _ $ succ_pos _,

gcd (y % (x + 1)) (x + 1)

theorem gcd_zero_left (x : nat) : gcd 0 x = x := begin simp [gcd] end

theorem gcd_self (n : nat) : gcd n n = n :=
begin

cases n,
{ unfold gcd },
unfold gcd,
rewrite mod_self,
apply gcd_zero_left

end

end nat

1

Theorem Proving in Proof Assistants

12

Proof assistant

Human

Theorem Proving via Machine Learning - Kaiyu Yang

prelude
import init.data.nat.lemmas init.meta.well_founded_tactics

namespace nat

/-
t h e o r e m m o d _ s e l f (n : n a t) : n % n = 0 : =
b e g i n

r w [m o d _ e q _ s u b _ m o d (l e _ r e f l _) , n a t . s u b _ s e l f , z e r o _ m o d]
e n d
-/

def gcd : nat → nat → nat
| 0 y := y
| (x + 1) y := have y % (x + 1) < x + 1, from mod_lt _ $ succ_pos _,

gcd (y % (x + 1)) (x + 1)

theorem gcd_zero_left (x : nat) : gcd 0 x = x := begin simp [gcd] end

theorem gcd_self (n : nat) : gcd n n = n :=
begin

cases n,
{ unfold gcd },
unfold gcd,
rewrite mod_self,
apply gcd_zero_left

end

end nat

1

Theorem Proving in Proof Assistants

13

n : ℕ
⊢ gcd n n = n

Proof assistant

Human

Theorem Proving via Machine Learning - Kaiyu Yang

prelude
import init.data.nat.lemmas init.meta.well_founded_tactics

namespace nat

/-
t h e o r e m m o d _ s e l f (n : n a t) : n % n = 0 : =
b e g i n

r w [m o d _ e q _ s u b _ m o d (l e _ r e f l _) , n a t . s u b _ s e l f , z e r o _ m o d]
e n d
-/

def gcd : nat → nat → nat
| 0 y := y
| (x + 1) y := have y % (x + 1) < x + 1, from mod_lt _ $ succ_pos _,

gcd (y % (x + 1)) (x + 1)

theorem gcd_zero_left (x : nat) : gcd 0 x = x := begin simp [gcd] end

theorem gcd_self (n : nat) : gcd n n = n :=
begin

cases n,
{ unfold gcd },
unfold gcd,
rewrite mod_self,
apply gcd_zero_left

end

end nat

1

Theorem Proving in Proof Assistants

14

n : ℕ
⊢ gcd n n = n

⊢ gcd 0 0 = 0 k : ℕ
⊢ gcd (k + 1) (k + 1) = k + 1

cases n

Proof assistant

Human

Theorem Proving via Machine Learning - Kaiyu Yang

prelude
import init.data.nat.lemmas init.meta.well_founded_tactics

namespace nat

/-
t h e o r e m m o d _ s e l f (n : n a t) : n % n = 0 : =
b e g i n

r w [m o d _ e q _ s u b _ m o d (l e _ r e f l _) , n a t . s u b _ s e l f , z e r o _ m o d]
e n d
-/

def gcd : nat → nat → nat
| 0 y := y
| (x + 1) y := have y % (x + 1) < x + 1, from mod_lt _ $ succ_pos _,

gcd (y % (x + 1)) (x + 1)

theorem gcd_zero_left (x : nat) : gcd 0 x = x := begin simp [gcd] end

theorem gcd_self (n : nat) : gcd n n = n :=
begin

cases n,
{ unfold gcd },
unfold gcd,
rewrite mod_self,
apply gcd_zero_left

end

end nat

1

unfold gcd

Theorem Proving in Proof Assistants

15

n : ℕ
⊢ gcd n n = n

⊢ gcd 0 0 = 0 k : ℕ
⊢ gcd (k + 1) (k + 1) = k + 1

cases n

Proof assistant

Human

Theorem Proving via Machine Learning - Kaiyu Yang

prelude
import init.data.nat.lemmas init.meta.well_founded_tactics

namespace nat

/-
t h e o r e m m o d _ s e l f (n : n a t) : n % n = 0 : =
b e g i n

r w [m o d _ e q _ s u b _ m o d (l e _ r e f l _) , n a t . s u b _ s e l f , z e r o _ m o d]
e n d
-/

def gcd : nat → nat → nat
| 0 y := y
| (x + 1) y := have y % (x + 1) < x + 1, from mod_lt _ $ succ_pos _,

gcd (y % (x + 1)) (x + 1)

theorem gcd_zero_left (x : nat) : gcd 0 x = x := begin simp [gcd] end

theorem gcd_self (n : nat) : gcd n n = n :=
begin

cases n,
{ unfold gcd },
unfold gcd,
rewrite mod_self,
apply gcd_zero_left

end

end nat

1

unfold gcd
unfold gcd

Theorem Proving in Proof Assistants

16

n : ℕ
⊢ gcd n n = n

⊢ gcd 0 0 = 0 k : ℕ
⊢ gcd (k + 1) (k + 1) = k + 1

k : ℕ
⊢ gcd ((k + 1) % (k + 1)) (k + 1) = k + 1

cases n

Proof assistant

Human

Theorem Proving via Machine Learning - Kaiyu Yang

prelude
import init.data.nat.lemmas init.meta.well_founded_tactics

namespace nat

/-
t h e o r e m m o d _ s e l f (n : n a t) : n % n = 0 : =
b e g i n

r w [m o d _ e q _ s u b _ m o d (l e _ r e f l _) , n a t . s u b _ s e l f , z e r o _ m o d]
e n d
-/

def gcd : nat → nat → nat
| 0 y := y
| (x + 1) y := have y % (x + 1) < x + 1, from mod_lt _ $ succ_pos _,

gcd (y % (x + 1)) (x + 1)

theorem gcd_zero_left (x : nat) : gcd 0 x = x := begin simp [gcd] end

theorem gcd_self (n : nat) : gcd n n = n :=
begin

cases n,
{ unfold gcd },
unfold gcd,
rewrite mod_self,
apply gcd_zero_left

end

end nat

1

rewrite mod_self

unfold gcd
unfold gcd

Theorem Proving in Proof Assistants

17

n : ℕ
⊢ gcd n n = n

⊢ gcd 0 0 = 0 k : ℕ
⊢ gcd (k + 1) (k + 1) = k + 1

k : ℕ
⊢ gcd ((k + 1) % (k + 1)) (k + 1) = k + 1

k : ℕ
⊢ gcd 0 (k + 1) = k + 1

cases n

Proof assistant

Human

Theorem Proving via Machine Learning - Kaiyu Yang

rewrite mod_self

prelude
import init.data.nat.lemmas init.meta.well_founded_tactics

namespace nat

/-
t h e o r e m m o d _ s e l f (n : n a t) : n % n = 0 : =
b e g i n

r w [m o d _ e q _ s u b _ m o d (l e _ r e f l _) , n a t . s u b _ s e l f , z e r o _ m o d]
e n d
-/

def gcd : nat → nat → nat
| 0 y := y
| (x + 1) y := have y % (x + 1) < x + 1, from mod_lt _ $ succ_pos _,

gcd (y % (x + 1)) (x + 1)

theorem gcd_zero_left (x : nat) : gcd 0 x = x := begin simp [gcd] end

theorem gcd_self (n : nat) : gcd n n = n :=
begin

cases n,
{ unfold gcd },
unfold gcd,
rewrite mod_self,
apply gcd_zero_left

end

end nat

1

apply gcd_zero_left

unfold gcd
unfold gcd

Theorem Proving in Proof Assistants

18

n : ℕ
⊢ gcd n n = n

⊢ gcd 0 0 = 0 k : ℕ
⊢ gcd (k + 1) (k + 1) = k + 1

k : ℕ
⊢ gcd ((k + 1) % (k + 1)) (k + 1) = k + 1

k : ℕ
⊢ gcd 0 (k + 1) = k + 1

cases n

Proof assistant

Human

Theorem Proving via Machine Learning - Kaiyu Yang

prelude
import init.data.nat.lemmas init.meta.well_founded_tactics

namespace nat

/-
t h e o r e m m o d _ s e l f (n : n a t) : n % n = 0 : =
b e g i n

r w [m o d _ e q _ s u b _ m o d (l e _ r e f l _) , n a t . s u b _ s e l f , z e r o _ m o d]
e n d
-/

def gcd : nat → nat → nat
| 0 y := y
| (x + 1) y := have y % (x + 1) < x + 1, from mod_lt _ $ succ_pos _,

gcd (y % (x + 1)) (x + 1)

theorem gcd_zero_left (x : nat) : gcd 0 x = x := begin simp [gcd] end

theorem gcd_self (n : nat) : gcd n n = n :=
begin

cases n,
{ unfold gcd },
unfold gcd,
rewrite mod_self,
apply gcd_zero_left

end

end nat

1

rewrite mod_self

apply gcd_zero_left

unfold gcd
unfold gcd

Theorem Proving in Proof Assistants

19

n : ℕ
⊢ gcd n n = n

⊢ gcd 0 0 = 0 k : ℕ
⊢ gcd (k + 1) (k + 1) = k + 1

k : ℕ
⊢ gcd ((k + 1) % (k + 1)) (k + 1) = k + 1

k : ℕ
⊢ gcd 0 (k + 1) = k + 1

cases n

Proof assistant

Human

Theorem Proving via Machine Learning - Kaiyu Yang

High-level guidance from mathematicians

rewrite mod_self

prelude
import init.data.nat.lemmas init.meta.well_founded_tactics

namespace nat

/-
t h e o r e m m o d _ s e l f (n : n a t) : n % n = 0 : =
b e g i n

r w [m o d _ e q _ s u b _ m o d (l e _ r e f l _) , n a t . s u b _ s e l f , z e r o _ m o d]
e n d
-/

def gcd : nat → nat → nat
| 0 y := y
| (x + 1) y := have y % (x + 1) < x + 1, from mod_lt _ $ succ_pos _,

gcd (y % (x + 1)) (x + 1)

theorem gcd_zero_left (x : nat) : gcd 0 x = x := begin simp [gcd] end

theorem gcd_self (n : nat) : gcd n n = n :=
begin

cases n,
{ unfold gcd },
unfold gcd,
rewrite mod_self,
apply gcd_zero_left

end

end nat

1

unfold gcd
unfold gcd

Theorem Proving in Proof Assistants

20

n : ℕ
⊢ gcd n n = n

⊢ gcd 0 0 = 0 k : ℕ
⊢ gcd (k + 1) (k + 1) = k + 1

k : ℕ
⊢ gcd ((k + 1) % (k + 1)) (k + 1) = k + 1

k : ℕ
⊢ gcd 0 (k + 1) = k + 1

cases n

Proof assistant

Human

Theorem Proving via Machine Learning - Kaiyu Yang

High-level guidance from mathematicians

Labor-intensive apply gcd_zero_left

rewrite mod_self

prelude
import init.data.nat.lemmas init.meta.well_founded_tactics

namespace nat

/-
t h e o r e m m o d _ s e l f (n : n a t) : n % n = 0 : =
b e g i n

r w [m o d _ e q _ s u b _ m o d (l e _ r e f l _) , n a t . s u b _ s e l f , z e r o _ m o d]
e n d
-/

def gcd : nat → nat → nat
| 0 y := y
| (x + 1) y := have y % (x + 1) < x + 1, from mod_lt _ $ succ_pos _,

gcd (y % (x + 1)) (x + 1)

theorem gcd_zero_left (x : nat) : gcd 0 x = x := begin simp [gcd] end

theorem gcd_self (n : nat) : gcd n n = n :=
begin

cases n,
{ unfold gcd },
unfold gcd,
rewrite mod_self,
apply gcd_zero_left

end

end nat

1

apply gcd_zero_left

unfold gcd
unfold gcd

Theorem Proving in Proof Assistants

21

n : ℕ
⊢ gcd n n = n

⊢ gcd 0 0 = 0 k : ℕ
⊢ gcd (k + 1) (k + 1) = k + 1

k : ℕ
⊢ gcd ((k + 1) % (k + 1)) (k + 1) = k + 1

k : ℕ
⊢ gcd 0 (k + 1) = k + 1

cases n

Proof assistant

Human

Theorem Proving via Machine Learning - Kaiyu Yang

High-level guidance from mathematicians

Labor-intensive

Lean to interact with proof assistantsMachine
learning

Large Language Models (LLMs)

Theorem Proving via Machine Learning - Kaiyu Yang 22

Large Language Models (LLMs) for Math

• GPT-4: 89th percentile in SAT Math among human test takers

Theorem Proving via Machine Learning - Kaiyu Yang 23

[OpenAI, "GPT-4 Technical Report", 2023]

Large Language Models (LLMs) for Math

• GPT-4: 89th percentile in SAT Math among human test takers
• Minerva: Google’s LLM specialized in math

Theorem Proving via Machine Learning - Kaiyu Yang 24

[OpenAI, "GPT-4 Technical Report", 2023]
[Lewkowycz et al., "Solving Quantitative Reasoning
Problems with Language Models", 2022]

Large Language Models (LLMs) for Math

• GPT-4: 89th percentile in SAT Math among human test takers
• Minerva: Google’s LLM specialized in math

Theorem Proving via Machine Learning - Kaiyu Yang 25

[OpenAI, "GPT-4 Technical Report", 2023]
[Lewkowycz et al., "Solving Quantitative Reasoning
Problems with Language Models", 2022]

Large Language Models (LLMs) for Math

Theorem Proving via Machine Learning - Kaiyu Yang 26

Large Language Models (LLMs) for Math

Theorem Proving via Machine Learning - Kaiyu Yang 27

[Collins et al., "Evaluating Language Models
for Mathematics through Interactions", 2023]

Large Language Models (LLMs) for Math

Theorem Proving via Machine Learning - Kaiyu Yang 28

[Collins et al., "Evaluating Language Models
for Mathematics through Interactions", 2023]

LLMs can be useful for theorem proving in Lean

What are LLMs?

Theorem Proving via Machine Learning - Kaiyu Yang 29

• Map the input string 𝒙 to the output string 𝒚

• 𝑦 is generated word by word

𝑦 = 𝑓(𝑥; 	𝜃)

What are LLMs?

Theorem Proving via Machine Learning - Kaiyu Yang 30

• Map the input string 𝑥 to the output string 𝑦

• 𝑦 is generated word by word

• The mapping is parameterized by 𝜽 ∈ ℝ𝒏 with 𝒏 ≫ 𝟏𝑦 = 𝑓(𝑥; 	𝜃)

What are LLMs?

Theorem Proving via Machine Learning - Kaiyu Yang 31

• Map the input string 𝑥 to the output string 𝑦

• 𝑦 is generated word by word

• The mapping is parameterized by 𝜃 ∈ ℝ" with 𝑛 ≫ 1

• State-of-the-art LLMs are mostly based on a class of mappings called Transformer

[Vaswani et al., 2017]

𝑦 = 𝑓(𝑥; 	𝜃)

Training LLMs

Theorem Proving via Machine Learning - Kaiyu Yang 32

Initialize 𝜽 randomly

𝑦 = 𝑓(𝑥;	𝜃#)

Training LLMs

Theorem Proving via Machine Learning - Kaiyu Yang 33

How are you?

D@saf;o;k#fd?H …

Initialize 𝜽 randomly

𝑦 = 𝑓(𝑥;	𝜃#)

Training LLMs

Theorem Proving via Machine Learning - Kaiyu Yang 34

𝑦 = 𝑓(𝑥;	𝜃$)

How are you?

D@saf;o;k#fd?H …

Pretrain on
Internet texts

𝑦 = 𝑓(𝑥;	𝜃#)

[Radford et al., "Improving Language
Understanding By Generative Pre-training", 2018]

Training LLMs

Theorem Proving via Machine Learning - Kaiyu Yang 35

How are you?

D@saf;o;k#fd?H …

How are you?

I am a senior web developer
with extensive experience in
building high quality sites. I
want to work with you for a
long time. Please send me a
message so that we can
discuss more. Best regards.

Pretrain on
Internet texts

𝑦 = 𝑓(𝑥;	𝜃$)𝑦 = 𝑓(𝑥;	𝜃#)

Training LLMs

Theorem Proving via Machine Learning - Kaiyu Yang 36

How are you?

D@saf;o;k#fd?H …

How are you?

I am a senior web developer
with extensive experience in
building high quality sites. I
want to work with you for a
long time. Please send me a
message so that we can
discuss more. Best regards.

Pretrain on
Internet texts

𝑦 = 𝑓(𝑥;	𝜃$)𝑦 = 𝑓(𝑥;	𝜃#)

Align to humans
(optional)

𝑦 = 𝑓(𝑥; 𝜃%)

[Ouyang et al., "Training Language Models To
Follow Instructions With Human Feedback", 2022]

Training LLMs

Theorem Proving via Machine Learning - Kaiyu Yang 37

𝑦 = 𝑓(𝑥; 𝜃%)

How are you?

D@saf;o;k#fd?H … Hello! I don't have feelings, but I'm
here and ready to assist you with
any information or help you may
need. How can I assist you today?

How are you?How are you?

I am a senior web developer
with extensive experience in
building high quality sites. I
want to work with you for a
long time. Please send me a
message so that we can
discuss more. Best regards.

Pretrain on
Internet texts

𝑦 = 𝑓(𝑥;	𝜃$)𝑦 = 𝑓(𝑥;	𝜃#)

Align to humans
(optional)

Training LLMs

Theorem Proving via Machine Learning - Kaiyu Yang 38

𝑦 = 𝑓(𝑥; 𝜃%)

How are you?

D@saf;o;k#fd?H … Hello! I don't have feelings, but I'm
here and ready to assist you with
any information or help you may
need. How can I assist you today?

How are you?How are you?

I am a senior web developer
with extensive experience in
building high quality sites. I
want to work with you for a
long time. Please send me a
message so that we can
discuss more. Best regards.

Pretrain on
Internet texts

𝑦 = 𝑓(𝑥;	𝜃$)𝑦 = 𝑓(𝑥;	𝜃#)

Align to humans
(optional)

Using LLMs: Prompting vs. Finetuning

Theorem Proving via Machine Learning - Kaiyu Yang 39

How are you?

D@saf;o;k#fd?H …

How are you?

I am a senior web developer
with extensive experience in
building high quality sites. I
want to work with you for a
long time. Please send me a
message so that we can
discuss more. Best regards.

Pretrain on
Internet texts

𝑦 = 𝑓(𝑥;	𝜃$)𝑦 = 𝑓(𝑥;	𝜃#) 𝑦 = 𝑓(𝑥; 𝜃%)

Align to humans
(optional)

Using LLMs: Prompting vs. Finetuning

Theorem Proving via Machine Learning - Kaiyu Yang 40

How are you?

D@saf;o;k#fd?H … negative

How are you?

I am a senior web developer
with extensive experience in
building high quality sites. I
want to work with you for a
long time. Please send me a
message so that we can
discuss more. Best regards.

Pretrain on
Internet texts

𝑦 = 𝑓(𝑥;	𝜃$)𝑦 = 𝑓(𝑥;	𝜃#) 𝑦 = 𝑓(𝑥; 𝜃%)

Please classify the sentiment in
this product review by replying
either "positive" or "negative":
``` This tent was missing its 
stakes, tarp, and fly cover. I had 
to cover it in leaves.```

Align to humans 
(optional)



Using LLMs: Prompting vs. Finetuning

Theorem Proving via Machine Learning  -  Kaiyu Yang 41

How are you?

D@saf;o;k#fd?H … Hello! I don't have feelings, but I'm 
here and ready to assist you with 
any information or help you may 
need. How can I assist you today?

How are you?How are you?

I am a senior web developer 
with extensive experience in 
building high quality sites. I 
want to work with you for a 
long time. Please send me a 
message so that we can 
discuss more. Best regards.

Pretrain on
Internet texts

𝑦 = 𝑓(𝑥;	𝜃$)𝑦 = 𝑓(𝑥;	𝜃#) 𝑦 = 𝑓(𝑥; 𝜃%)

Finetune 
(optional) 𝑦 = 𝑓(𝑥;	𝜃&)

Align to humans 
(optional)



Using LLMs: Prompting vs. Finetuning

Theorem Proving via Machine Learning  -  Kaiyu Yang 42

𝑦 = 𝑓(𝑥;	𝜃&)

How are you?

D@saf;o;k#fd?H … Hello! I don't have feelings, but I'm 
here and ready to assist you with 
any information or help you may 
need. How can I assist you today?

How are you?How are you?

I am a senior web developer 
with extensive experience in 
building high quality sites. I 
want to work with you for a 
long time. Please send me a 
message so that we can 
discuss more. Best regards.

This tent was missing its 
stakes, tarp, and fly cover. 
I had to cover it in leaves.

negative

Pretrain on
Internet texts

𝑦 = 𝑓(𝑥;	𝜃$)𝑦 = 𝑓(𝑥;	𝜃#) 𝑦 = 𝑓(𝑥; 𝜃%)

Align to humans 
(optional)

Finetune 
(optional)



Using LLMs: Prompting vs. Finetuning

Theorem Proving via Machine Learning  -  Kaiyu Yang 43

𝑦 = 𝑓(𝑥;	𝜃&)

How are you?

D@saf;o;k#fd?H … Hello! I don't have feelings, but I'm 
here and ready to assist you with 
any information or help you may 
need. How can I assist you today?

How are you?How are you?

I am a senior web developer 
with extensive experience in 
building high quality sites. I 
want to work with you for a 
long time. Please send me a 
message so that we can 
discuss more. Best regards.

a b : ℕ 
⊢ a + b = b + a

rw [add_comm]

Pretrain on
Internet texts

𝑦 = 𝑓(𝑥;	𝜃$)𝑦 = 𝑓(𝑥;	𝜃#) 𝑦 = 𝑓(𝑥; 𝜃%)

Align to humans 
(optional)

Finetune 
(optional)



LLMs for Theorem Proving

Theorem Proving via Machine Learning  -  Kaiyu Yang 44



Using LLMs to Generate Tactics

• Training
1. Pretrain on generic texts from the Internet
2. Optional: Pretrain on domain-specific texts, e.g., MathOverflow and GitHub
3. Finetune on (goal, tactic) pairs from formal math libraries, e.g., AFP or mathlib

Theorem Proving via Machine Learning  -  Kaiyu Yang 45

[Polu and Sutskever, "Generative Language 
Modeling for Automated Theorem Proving", 2020]

k : ℕ 
⊢  gcd ((k + 1) % (k + 1)) (k + 1) = k + 1 rw mod_selfLLM

Proof goal Tactic



Using LLMs to Generate Tactics

• Training
1. Pretrain on generic texts from the Internet
2. Optional: Pretrain on domain-specific texts, e.g., MathOverflow and GitHub
3. Finetune on (goal, tactic) pairs from formal math libraries, e.g., AFP or mathlib

• Testing
• Sample multiple tactic suggestions at each step and search for proofs
• Evaluate on % of theorems proved under a fixed compute budget

Theorem Proving via Machine Learning  -  Kaiyu Yang 46

[Polu and Sutskever, "Generative Language 
Modeling for Automated Theorem Proving", 2020]

k : ℕ 
⊢  gcd ((k + 1) % (k + 1)) (k + 1) = k + 1 rw mod_self

simp
unfold gcd
…

LLM

Proof goal Tactic



Proof Artifact Co-training

• LLMs are data-hungry, but human-written proofs are limited (~100K proofs in mathlib)

• 9 auxiliary tasks
• Next lemma prediction: Proof goal -> the next lemma to be applied
• Type prediction: Partial proof term -> its type
• Theorem naming: theorem statement -> its name
• …

Theorem Proving via Machine Learning  -  Kaiyu Yang 47

[Han et al., "Proof Artifact Co-training for Theorem Proving with Language Models", 2022]



Proof Artifact Co-training

• LLMs are data-hungry, but human-written proofs are limited (~100K proofs in mathlib)

• 9 auxiliary tasks
• Next lemma prediction: Proof goal -> the next lemma to be applied
• Type prediction: Partial proof term -> its type
• Theorem naming: theorem statement -> its name
• …

• Key insight: Training on tactic generation + auxiliary tasks is better than tactic generation alone

Theorem Proving via Machine Learning  -  Kaiyu Yang 48

[Han et al., "Proof Artifact Co-training for Theorem Proving with Language Models", 2022]



MiniF2F Benchmark

• Math olympiads problems from AMC, AIME, IMO, etc.
• 488 theorems (many w/o proof) for evaluation; no training

Theorem Proving via Machine Learning  -  Kaiyu Yang 49

[Zheng et al., "MiniF2F: A Cross-System Benchmark for Formal Olympiad-Level Mathematics", 2022]



MiniF2F Benchmark

• Math olympiads problems from AMC, AIME, IMO, etc.
• 488 theorems (many w/o proof) for evaluation; no training
• Open problems:

• How to formalize problems asking for numerical answers?
• How to deal with geometry?

Theorem Proving via Machine Learning  -  Kaiyu Yang 50

[Zheng et al., "MiniF2F: A Cross-System Benchmark for Formal Olympiad-Level Mathematics", 2022]



Expert Iteration

• Specialized domains without sufficient existing proofs for training, e.g., MiniF2F

• LLMs perform badly on out-of-domain data

Theorem Proving via Machine Learning  -  Kaiyu Yang 51

[Polu et al., "Formal Mathematics Statement Curriculum Learning", 2023]



Expert Iteration

• Specialized domains without sufficient existing proofs for training, e.g., MiniF2F

• LLMs perform badly on out-of-domain data

• Solution: Iteratively improve the prover on the new domain
1. Train the prover
2. Use the prover to find new proofs
3. Add new proofs to the training data and go back to step 1

Theorem Proving via Machine Learning  -  Kaiyu Yang 52

[Polu et al., "Formal Mathematics Statement Curriculum Learning", 2023]



Expert Iteration

• Specialized domains without sufficient existing proofs for training, e.g., MiniF2F

• LLMs perform badly on out-of-domain data

• Solution: Iteratively improve the prover on the new domain
1. Train the prover
2. Use the prover to find new proofs
3. Add new proofs to the training data and go back to step 1

Theorem Proving via Machine Learning  -  Kaiyu Yang 53

[Polu et al., "Formal Mathematics Statement Curriculum Learning", 2023]



Pipeline for Learning-based Theorem Proving

• Learning-based provers are complicated

Theorem Proving via Machine Learning  -  Kaiyu Yang 54

Lean Machine learning model

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]



Pipeline for Learning-based Theorem Proving

• Learning-based provers are complicated

Theorem Proving via Machine Learning  -  Kaiyu Yang 55

Lean Machine learning model

Data 
extraction

Training Dataset

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]



Pipeline for Learning-based Theorem Proving

• Learning-based provers are complicated

Theorem Proving via Machine Learning  -  Kaiyu Yang 56

Lean Machine learning model

Data 
extraction Training

Training Dataset

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]



Pipeline for Learning-based Theorem Proving

• Learning-based provers are complicated

Theorem Proving via Machine Learning  -  Kaiyu Yang 57

Lean Machine learning model

Data 
extraction Training

Prove theorems by Interaction

Training Dataset

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]



58

Dataset 
available

Model 
available

Code 
available

Interaction 
tool available

Model size 
(# params)

Compute
(hours)

Jiang et al., LISA, 2021 163M -

Jiang et al., Thor, 2022 700M 1K on TPU

First et al., Baldur, 2023 62,000M -

Polu and Sutskever, GPT-f, 2020 774M 40K on GPU

Han et al., PACT, 2022 837M 1.5K on GPU

Polu et al., 2023 774M 48K on GPU

Lample et al., HTPS 2022 600M 34K on GPU

Wang et al., DT-Solver, 2023 774M 1K on GPU

LeanDojo (ours) 517M 120 on GPU

Theorem Proving via Machine Learning  -  Kaiyu Yang

Breaking the Barriers in LLMs for Theorem Proving

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]



59

Dataset 
available

Model 
available

Code 
available

Interaction 
tool available

Model size 
(# params)

Compute
(hours)

Jiang et al., LISA, 2021 163M -

Jiang et al., Thor, 2022 700M 1K on TPU

First et al., Baldur, 2023 62,000M -

Polu and Sutskever, GPT-f, 2020 774M 40K on GPU

Han et al., PACT, 2022 837M 1.5K on GPU

Polu et al., 2023 774M 48K on GPU

Lample et al., HTPS 2022 600M 34K on GPU

Wang et al., DT-Solver, 2023 774M 1K on GPU

LeanDojo (ours) 517M 120 on GPU

Theorem Proving via Machine Learning  -  Kaiyu Yang

Breaking the Barriers in LLMs for Theorem Proving

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]



60

Dataset 
available

Model 
available

Code 
available

Interaction 
tool available

Model size 
(# params)

Compute
(hours)

Jiang et al., LISA, 2021 163M -

Jiang et al., Thor, 2022 700M 1K on TPU

First et al., Baldur, 2023 62,000M -

Polu and Sutskever, GPT-f, 2020 774M 40K on GPU

Han et al., PACT, 2022 837M 1.5K on GPU

Polu et al., 2023 774M 48K on GPU

Lample et al., HTPS 2022 600M 34K on GPU

Wang et al., DT-Solver, 2023 774M 1K on GPU

LeanDojo (ours) 517M 120 on GPU

Theorem Proving via Machine Learning  -  Kaiyu Yang

Breaking the Barriers in LLMs for Theorem Proving

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]



61

Dataset 
available

Model 
available

Code 
available

Interaction 
tool available

Model size 
(# params)

Compute
(hours)

Jiang et al., LISA, 2021 163M -

Jiang et al., Thor, 2022 700M 1K on TPU

First et al., Baldur, 2023 62,000M -

Polu and Sutskever, GPT-f, 2020 774M 40K on GPU

Han et al., PACT, 2022 837M 1.5K on GPU

Polu et al., 2023 774M 48K on GPU

Lample et al., HTPS 2022 600M 34K on GPU

Wang et al., DT-Solver, 2023 774M 1K on GPU

LeanDojo (ours) 517M 120 on GPU

Theorem Proving via Machine Learning  -  Kaiyu Yang

Breaking the Barriers in LLMs for Theorem Proving

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]



62

Dataset 
available

Model 
available

Code 
available

Interaction 
tool available

Model size 
(# params)

Compute
(hours)

Jiang et al., LISA, 2021 163M -

Jiang et al., Thor, 2022 700M 1K on TPU

First et al., Baldur, 2023 62,000M -

Polu and Sutskever, GPT-f, 2020 774M 40K on GPU

Han et al., PACT, 2022 837M 1.5K on GPU

Polu et al., 2023 774M 48K on GPU

Lample et al., HTPS 2022 600M 34K on GPU

Wang et al., DT-Solver, 2023 774M 1K on GPU

LeanDojo (ours) 517M 120 on GPU

Theorem Proving via Machine Learning  -  Kaiyu Yang

Breaking the Barriers in LLMs for Theorem Proving

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]



63

Dataset 
available

Model 
available

Code 
available

Interaction 
tool available

Model size 
(# params)

Compute
(hours)

Jiang et al., LISA, 2021 163M -

Jiang et al., Thor, 2022 700M 1K on TPU

First et al., Baldur, 2023 62,000M -

Polu and Sutskever, GPT-f, 2020 774M 40K on GPU

Han et al., PACT, 2022 837M 1.5K on GPU

Polu et al., 2023 774M 48K on GPU

Lample et al., HTPS 2022 600M 34K on GPU

Wang et al., DT-Solver, 2023 774M 1K on GPU

LeanDojo (ours) 517M 120 on GPU

Theorem Proving via Machine Learning  -  Kaiyu Yang

Breaking the Barriers in LLMs for Theorem Proving

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]



Breaking the Barriers in LLMs for Theorem Proving

Theorem Proving via Machine Learning  -  Kaiyu Yang 64

Dataset 
available

Model 
available

Code 
available

Interaction 
tool available

Model size 
(# params)

Compute
(hours)

Jiang et al., LISA, 2021 163M -

Jiang et al., Thor, 2022 700M 1K on TPU

First et al., Baldur, 2023 62,000M -

Polu and Sutskever, GPT-f, 2020 774M 40K on GPU

Han et al., PACT, 2022 837M 1.5K on GPU

Polu et al., 2023 774M 48K on GPU

Lample et al., HTPS 2022 600M 34K on GPU

Wang et al., DT-Solver, 2023 774M 1K on GPU

LeanDojo (ours) 517M 120 on GPU

Give researchers access to state-of-the-art LLM-based provers with modest computational costs

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]



Retrieval-Augmented Prover

65Kaiyu Yang  et al.  -  LeanDojo: Theorem Proving with Retrieval-Augmented Language Models

• Existing methods only see the current proof state, w/o knowledge of premises

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]

[Vaswani et al., NeurIPS 2017]



Retrieval-Augmented Prover

66Kaiyu Yang  et al.  -  LeanDojo: Theorem Proving with Retrieval-Augmented Language Models

• Existing methods only see the current proof state, w/o knowledge of premises

• Given a state, we retrieve premises from the set of all accessible premises

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]



Retrieval-Augmented Prover

67Kaiyu Yang  et al.  -  LeanDojo: Theorem Proving with Retrieval-Augmented Language Models

• Existing methods only see the current proof state, w/o knowledge of premises

• Given a state, we retrieve premises from the set of all accessible premises

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]



Retrieval-Augmented Prover

68Kaiyu Yang  et al.  -  LeanDojo: Theorem Proving with Retrieval-Augmented Language Models

• Existing methods only see the current proof state, w/o knowledge of premises

• Given a state, we retrieve premises from the set of all accessible premises

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]



Retrieval-Augmented Prover

69Kaiyu Yang  et al.  -  LeanDojo: Theorem Proving with Retrieval-Augmented Language Models

• Existing methods only see the current proof state, w/o knowledge of premises

• Given a state, we retrieve premises from the set of all accessible premises

• Retrieved premises are concatenated with the state and used for tactic generation

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]



Retrieval-Augmented Prover

70Kaiyu Yang  et al.  -  LeanDojo: Theorem Proving with Retrieval-Augmented Language Models

• Existing methods only see the current proof state, w/o knowledge of premises

• Given a state, we retrieve premises from the set of all accessible premises

• Retrieved premises are concatenated with the state and used for tactic generation

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]



ChatGPT for Theorem Proving in Lean

71Kaiyu Yang  et al.  -  LeanDojo: Theorem Proving with Retrieval-Augmented Language Models

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]



Autoformalization

Theorem Proving via Machine Learning  -  Kaiyu Yang 72

[Wu et al., "Autoformalization with Large Language Models", 2022]

• LLMs translate informal math into formal math

• Very useful task, but less well-defined. Hard to evaluate



Guiding Formal Provers with Informal Proofs

Theorem Proving via Machine Learning  -  Kaiyu Yang 73

[Jiang et al., "Draft, Sketch, and Prove: Guiding Formal Theorem Provers with Informal Proofs", 2023]



LLM-based Proof Automation Tools for Lean

Theorem Proving via Machine Learning  -  Kaiyu Yang 74



Bridging Machine Learning and Theorem Proving

Kaiyu Yang  et al.  -  LeanDojo: Theorem Proving with Retrieval-Augmented Language Models 75

Lean Machine learning model



Bridging Machine Learning and Theorem Proving

Kaiyu Yang  et al.  -  LeanDojo: Theorem Proving with Retrieval-Augmented Language Models 76

Lean Machine learning model

Machine learning researchers work on theorem proving



Bridging Machine Learning and Theorem Proving

Kaiyu Yang  et al.  -  LeanDojo: Theorem Proving with Retrieval-Augmented Language Models 77

Lean Machine learning model

Learning-based proof automation tools for Lean users

Machine learning researchers work on theorem proving



Bridging Machine Learning and Theorem Proving

Kaiyu Yang  et al.  -  LeanDojo: Theorem Proving with Retrieval-Augmented Language Models 78

Lean Machine learning model

Learning-based proof automation tools for Lean users

• Run on CPUs reasonably fast

• Integrated into VSCode

• Care about a specific domain, not aggregated performance on mathlib

Machine learning researchers work on theorem proving



Tools for Tactic Suggestion

Theorem Proving via Machine Learning  -  Kaiyu Yang 79

[Welleck and Saha, “llmstep: LLM proofstep suggestions in Lean”]
https://github.com/wellecks/llmstep

https://github.com/wellecks/llmstep


Tools for Premise Selection

• Built-in tactics such as library_search, apply?, exact?

Theorem Proving via Machine Learning  -  Kaiyu Yang 80

[Piotrowski et al. "Machine-Learned Premise Selection for Lean"]
https://github.com/BartoszPiotrowski/lean-premise-selection 

https://github.com/BartoszPiotrowski/lean-premise-selection


Tools for Interfacing with GPT-4

Kaiyu Yang  et al.  -  LeanDojo: Theorem Proving with Retrieval-Augmented Language Models 81

[Morrison et al., “Sagredo: automated dialogue between GPT and Lean”]
https://www.youtube.com/watch?v=CEwRMT0GpKo

https://www.youtube.com/watch?v=CEwRMT0GpKo


Thank You

Theorem Proving via Machine Learning  -  Kaiyu Yang 82


