Theorem Proving via Machine Learning

Kaiyu Yang

Postdoc @ Computing + Mathematical Sciences

Caltech

Computer-Aided Proofs in Mathematics

Four Color Theorem
Use computers to check 1000+ configurations

[Appel and Haken, "Every Planar Map Is Four Colorable", 1976]

Theorem Proving via Machine Learning - Kaiyu Yang

Computer-Aided Proofs in Mathematics

-Zi;’-ouantamaGazine O Q Q

FLUID DYNAMICS

Computer Proof ‘Blows Up’
Centuries-0Old Fluid Equations

By JORDANA CEPELEWICZ

November 16,2022

For more than 250 years, mathematicians have wondered if the Euler
equations might sometimes fail to describe a fluid’s flow. A new

computer-assisted proof marks a major breakthrough in that quest.

Four Color Theorem Blowup of the Euler Equations
Computers check 1000+ configurations Computers calculate bounds of integrals

[Chen and Thomas, "Stable Nearly Self-similar Blowup Of The 2D

[Appel and Haken, "Every Planar Map Is Four Colorable", 1976] : _ .
Boussinesq And 3D Euler Equations With Smooth Data", 2022]

Theorem Proving via Machine Learning - Kaiyu Yang

Automated Theorem Proving

(n+ 1n

+2+-+n > * Generate the proof fully automatically

Automated Theorem Proving

142+ -+ _ntDn
"TT * Generate the proof fully automatically
‘ * Low-level: First-order logic, CNFs, and resolution
/—lCIVPVﬂT \
qV—-xVy

_ J

Conjunctive normal form (CNF)

Theorem Proving via Machine Learning - Kaiyu Yang

Automated Theorem Proving

142 _(n+Dn
Fetrn="—" » Generate the proof fully automatically
‘ * Low-level: First-order logic, CNFs, and resolution
- Resolution
ﬂquV—n”
qV—-xVy
pV—er—ley<

_ J

Conjunctive normal form (CNF)

Theorem Proving via Machine Learning - Kaiyu Yang

Automated Theorem Proving

142 _(n+Dn
Fetrn="—" » Generate the proof fully automatically
‘ * Low-level: First-order logic, CNFs, and resolution
/—qupV—lr \
qV—-xVy
pV—er—ley

_ J

Conjunctive normal form (CNF)

Theorem Proving via Machine Learning - Kaiyu Yang

Automated Theorem Proving

142 _(n+Dn
Fetdn="—" » Generate the proof fully automatically
‘ * Low-level: First-order logic, CNFs, and resolution
/—qupV—lr \
qV—-xVy
pV—er—ley

_ J

Conjunctive normal form (CNF)

Theorem Proving via Machine Learning - Kaiyu Yang

Automated Theorem Proving

142 _(n+Dn
Fetdn="— » Generate the proof fully automatically
‘ * Low-level: First-order logic, CNFs, and resolution
/—qupV—lr \
qV—-xVy
pV—er—ley

\2-

Conjunctive normal form (CNF)

Theorem Proving via Machine Learning - Kaiyu Yang

Automated Theorem Proving

1+2++ (ot n
) n -_—— .
2 * Generate the proof fully automatically
* Low-level: First-order logic, CNFs, and resolution
* Main challenge: Large search space
/ \ [Haken, “The Intractability of Resolution”, Theoretical Computer Science, 1985]
—lC[VPV—lT'
gV —xVy * Heuristics for pruning the search space
[Kovacs and Voronkov, CAV 2013] [Urban et al. TABLEAUX 2011]
V T'V XV [Schulz et al. CADE 2019]. [Loos et al. LPAR-21]
pvarvoaxvy [Korovin, IJCAR 2008] [Kaliszyk et al. NeurlPS 2018]

Successful examples: Robbins Conjecture
[McCune, “Solution of the Robbins Problem”, 1997]

\2-

Conjunctive normal form (CNF)

Intractable for most theorems

Theorem Proving via Machine Learning - Kaiyu Yang

Automated Theorem Proving

(n+ 1)n

14+2 4 -4n=
+24-+n >

.
p

—lC[VPV—lT'

~

qV—-xVy
pV—er—ley

\2-

Conjunctive normal form (CNF)

* Generate the proof fully automatically
* Low-level: First-order logic, CNFs, and resolution
* Main challenge: Large search space

[Haken, “The Intractability of Resolution”, Theoretical Computer Science, 1985]

* Heuristics for pruning the search space

[Kovacs and Voronkov, CAV 2013] [Urban et al. TABLEAUX 2011]
[Schulz et al. CADE 2019]. [Loos et al. LPAR-21]
[Korovin, IJCAR 2008] [Kaliszyk et al. NeurlIPS 2018]

Successful examples: Robbins Conjecture
[McCune, “Solution of the Robbins Problem”, 1997]

Intractable for most theorems in math
Lack high-level intuitions of mathematicians

Theorem Proving via Machine Learning - Kaiyu Yang

10

Theorem Proving in Proof Assistants

VIN

Proof assistant

Theorem Proving via Machine Learning - Kaiyu Yang 11

Theorem Proving in Proof Assistants

Q theorem gcd_self (n : nat) : gcd nn =n :=
) A\
S

Human

Proof assistant

Theorem Proving via Machine Learning - Kaiyu Yang 12

Theorem Proving in Proof Assistants

n:N
A theorem gcd_self (n : nat) : gcd nn =n := Fgednn=n
au B
A\
Human N _

Proof assistant

Theorem Proving via Machine Learning - Kaiyu Yang 13

Theorem Proving in Proof Assistants

n:N
theorem gcd_self (n : nat) : gcd nn =n := Fgednn=n
begin Progab TNy

________________ PR ~~o) (4
lcasesm, ________ .' ez T TTmaa 7 03
gcd00=0 k:N (;J &‘\/J

Fged(k+1)(k+1)=k+1 3 ﬁ

Proof assistant

Human

Theorem Proving via Machine Learning - Kaiyu Yang 14

Theorem Proving in Proof Assistants

n:N
theorem gcd_self (n : nat) : gcd nn =n := Fgednn=n
begin /\ ‘ \C
cases 1 cases n :]) e\
e ot i e i e e g AV >
{unfold god }, "} -gcd00=0 k:N /J QO?“
I Fged(k+1)(k+1)=k+1) ﬁ

Human unfold ged | -
v VN

Proof assistant

Theorem Proving via Machine Learning - Kaiyu Yang 15

Theorem Proving in Proof Assistants

n:N
theorem gcd_self (n : nat) : gcd nn =n := Fgednn=n
begil'l /\ ' \e
cases n) A
cases n, ;] 'soe a”
{ unfold ged ¥, | -gcd00=0 k:N 2) QQQJJ
runfold gcd, I Fged(k+1)(k+1)=k+1) ﬁ

Human ~ ================ ! unfold gcdl

I
I fold gcd
/ g oo ‘ —W
k:N

F ged((k+1)%(k+1)) (k+1)=k+1

Proof assistant

Theorem Proving via Machine Learning - Kaiyu Yang 16

Theorem Proving in Proof Assistants

n:N
theorem gcd_self (n : nat) : gcd nn =n := Fgecdnn=n
begin 2
cases n, m ; l) ‘Oe\\
{ unfold gcd 7}, gcd00=0 k:N /J \9
unfold ged, | _____ Fecd(kr1)(kr1)2k+1 - L
Human rrewrite mod_self, i unfold gcd l

________________ 1 unfold gcd _vN
/ k:N \—

F ged((k+1)%(k+1)) (k+1)=k+1
1

| rewrite mod_self Proof assistant

4

k:N
FgedO(k+1)=k+1

Theorem Proving via Machine Learning - Kaiyu Yang 17

Theorem Proving in Proof Assistants

n:N
theorem gcd_self (n : nat) : gcd nn =n := Fgecdnn=n
begin
cases n, m e\\
{ unfold gcd 7}, gcd00=0 k:N /) ‘
unfold gcd, Fged(k+1)(k+1)=k+1
Human rewrite mod_self, unfold gcdl

Fapply gcd_zoro.left] | unfold ged H
end / k:N

F ged((k+1)%(k+1)) (k+1)=k+1

rewrite mod_self Proof assistant

\ 4

k:N
FgedO(k+1)=k+1

I
: apply gcd_zero_left
v

4

Theorem Proving via Machine Learning - Kaiyu Yang 18

Theorem Proving in Proof Assistants

n:N
theorem gcd_self (n : nat) : gcd nn =n := Fgecdnn=n
begin
cases n, m
{ unfold gcd }, Fged00=0 k:N
unfold gcd, Fged(k+1)(k+1)=k+1
Human rewrite mod_self, unfold gcd l
unfold gcd
apply gcd_zero_left 1
end / k:N

Fged((k+1)%(k+1) (k+1)=k+1
rewrite mod_self Proof assistant

\ 4

v~ High-level guidance from mathematicians N

FgedO(k+1)=k+1

1 apply gcd_zero_left

4

Theorem Proving via Machine Learning - Kaiyu Yang 19

Theorem Proving in Proof Assistants

n:N
theorem gcd_self (n : nat) : gcd nn =n := Fgecdnn=n
begin
cases n, m
{ unfold gcd }, Fged00=0 k:N
unfold gcd, Fged(k+1)(k+1)=k+1
Human rewrite mod_self, unfold gcd l
unfold gcd
apply gcd_zero_left 1
end / k:N

Fged((k+1)%(k+1) (k+1)=k+1
rewrite mod_self Proof assistant

\ 4

v~ High-level guidance from mathematicians N
FgedO(k+1)=k+1

X Labor-intensive l apply gcd_zero_left

4

Theorem Proving via Machine Learning - Kaiyu Yang 20

Theorem Proving in Proof Assistants

n:N
theorem gcd_self (n : nat) : gcd nn =n := Fgednn=n

begin e
{ unfold gcd }, Fgcd00=0 k:N /) \9
unfold gcd, Fged(k+1)(k+1)=k+1) ﬁ {,

rewrite mod_self, unfold gcd l

apply gcd_zero_left ! unfold ged :
end \’, N

Fged((k+1)%(k+1) (k+1)=k+1
rewrite mod_self Proof assistant

\ 4

v~ High-level guidance from mathematicians N

FgedO(k+1)=k+1

)(I:abel Htenstve lapplygcd_zero_left

Machine
learning

Lean to interact with proof assistants

Theorem Proving via Machine Learning - Kaiyu Yang 21

Large Language Models (LLMs)

Large Language Models (LLMs) for Math

* GPT-4: 89th percentile in SAT Math among human test takers

Exam results (ordered by GPT-3.5 performance)

gpt-4 [
Estimated percentile lower bound (among test takers) gpt-4 (no \gs{gng

100% —
80% —
60% —
40% —

20% —

[OpenAl, "GPT-4 Technical Report", 2023]

Theorem Proving via Machine Learning - Kaiyu Yang

23

Large Language Models (LLMs) for Math

Question: For every a, b, b # a prove that

a2 + b2 - (a—}-b)Q.
2 2

* GPT-4: 89th percentile in SAT Math among human test takers

* Minerva: Google’s LLM specialized in math

Exam results (ordered by GPT-3.5 performance)

Estimated percentile lower bound (among test takers) gpt-4 (no vision)
100% gpt3.5 W

40% —

[Lewkowycz et al., "Solving Quantitative Reasoning
[OpenAl, "GPT-4 Technical Report", 2023] Problems with Language Models", 2022]

Theorem Proving via Machine Learning - Kaiyu Yang 24

Large Language Models (LLMs) for Math

* GPT-4: 89th percentile in SAT Math among human test takers

Minerva: Google’s LLM specialized in math

Exam results (ordered by GPT-3.5 performance)

Estimated percentile lower bound (among test takers)
100% —

40% —

gpt-4
gpt-4 (no vision)
gpt3.5

[OpenAl, "GPT-4 Technical Report", 2023]

Theorem Proving via Machine Learning - Kaiyu Yang

Question: For every a, b, b # a prove that

a’® + b? S (a—l—b)z.
2 2

Model output:

azg—b2 > (a b)2

— a2-2}-b2 > a2+bi+2ab

— a2 +b> a2+b;+2ab
> 2a® 4+ 2b° > a® + b* + 2ab
< a® +b* > 2ab

< a’+b>—2ab>0

2

<~ (a—b)*">0

which is true, because the square of a real
number is positive.

[Lewkowycz et al., "Solving Quantitative Reasoning
Problems with Language Models", 2022]

25

Large Language Models (LLMs) for Math

Terence Tao

@tao@mathstodon.xyz

As an experiment, | recently tried consulting #GPT4 on a question | found on #MathOverflow prior to
obtaining a solution. The questlon is at mat et/q)... and my conversation with
GPT-4 is at chat /

the #Al to answer the questlon dlrectly €5 thls would almost surely lead to nonsense) but instead to
have it play the role of a collaborator and offer strategy suggestions. It did end up suggesting eight
approaches, one of which (generating functions) being the one that was ultimately successful. In this

particular case, | would probably have tried a generating function approach eventually, and had no
further need of GPT-4 once | started doing so (relying instead on a lengthy MAPLE worksheet, and
some good old-fashioned hand calculations at the blackboard and with pen and paper), but it was
slightly helpful nevertheless (I had initially thought of pursuing the asymptotic analysis approach
instead to gain intuition, but this turned out to be unnecessary). | also asked an auxiliary question in
which GPT-4 pointed out the relevance of Dyck paths (and some related structures), which led to one
of my other comments on the OP's question. | decided to share my experience in case it encourages
others to perform similar experiments.

Theorem Proving via Machine Learning - Kaiyu Yang

Large Language Models (LLMs) for Math

Terence Tao

@tao@mathstodon.xyz

As an experiment, | recently tried consulting #GPT4 on a question | found on #MathOverflow prior to
obtaining a solution. The question is at mathoverflow.net/questions/449... and my conversation with
GPT-4 is at chat.openai.com/share/53aab67e... . Based on past experience, | knew to not try to ask
the #Al to answer the question directly (as this would almost surely lead to nonsense), but instead to
have it play the role of a collaborator and offer strategy suggestions. It did end up suggesting eight
approaches, one of which (generating functions) being the one that was ultimately successful. In this

particular case, | would probably have tried a generating function approach eventually, and had no
further need of GPT-4 once | started doing so (relying instead on a lengthy MAPLE worksheet, and
some good old-fashioned hand calculations at the blackboard and with pen and paper), but it was
slightly helpful nevertheless (I had initially thought of pursuing the asymptotic analysis approach
instead to gain intuition, but this turned out to be unnecessary). | also asked an auxiliary question in
which GPT-4 pointed out the relevance of Dyck paths (and some related structures), which led to one
of my other comments on the OP's question. | decided to share my experience in case it encourages
others to perform similar experiments.

Interactive

O l

(@) evaluation

—

Generated

answer

How correct?

How helpful?
[Collins et al., "Evaluating Language Models
for Mathematics through Interactions", 2023]

Theorem Proving via Machine Learning - Kaiyu Yang 27

Large Language Models (LLMs) for Math

Terence Tao

@tao@mathstodon.xyz

As an experiment, | recently tried consulting #GPT4 on a question | found on #MathOverflow prior to
obtaining a solution. The question is at mathoverflow.net/questions/449... and my conversation with
GPT-4 is at chat.openai.com/share/53aab67e... . Based on past experience, | knew to not try to ask
the #Al to answer the question directly (as this would almost surely lead to nonsense), but instead to
have it play the role of a collaborator and offer strategy suggestions. It did end up suggesting eight
approaches, one of which (generating functions) being the one that was ultimately successful. In this

particular case, | would probably have tried a generating function approach eventually, and had no
further need of GPT-4 once | started doing so (relying instead on a lengthy MAPLE worksheet, and
some good old-fashioned hand calculations at the blackboard and with pen and paper), but it was

Interactive

slightly helpful nevertheless (I had initially thought of pursuing the asymptotic analysis approach
instead to gain intuition, but this turned out to be unnecessary). | also asked an auxiliary question in > {@_, evaluation
which GPT-4 pointed out the relevance of Dyck paths (and some related structures), which led to one 1

of my other comments on the OP's question. | decided to share my experience in case it encourages
others to perform similar experiments. O l
Generated

— answer

How correct?

How helpful?
[Collins et al., "Evaluating Language Models
for Mathematics through Interactions", 2023]

LLMs can be useful for theorem proving in Lean

Theorem Proving via Machine Learning - Kaiyu Yang 28

What are LLMs?

y=f(x; 0)

Map the input string x to the output string y

y is generated word by word

Theorem Proving via Machine Learning - Kaiyu Yang

29

What are LLMs?

y=f(x; 0)

Map the input string x to the output string y
y is generated word by word

The mapping is parameterized by 0 € R™ withn > 1

Theorem Proving via Machine Learning - Kaiyu Yang

30

What are LLMs?

* Map the input string x to the output string y

* vy isgenerated word by word

. . : no
y = f(x; 0) The mapping is parameterized by 8 € R"™ withn > 1

* State-of-the-art LLMs are mostly based on a class of mappings called Transformer

[Vaswani et al., 2017]

Theorem Proving via Machine Learning - Kaiyu Yang 31

Training LLMs

y = f(x; 6p)

Initialize @ randomly

Theorem Proving via Machine Learning - Kaiyu Yang

32

Training LLMs

How are you? Initialize @ randomly

|

y = f(x; 6p)

v

D@saf;0;k#fd?H ...

Theorem Proving via Machine Learning - Kaiyu Yang

33

Training LLMs

[Radford et al., "Improving Language

How are you? Understanding By Generative Pre-training", 2018]
l Pretrain on
Internet texts
y = f(x; 6o) | y = f(x; 61)

v

D@saf;0;k#fd?H ...

Theorem Proving via Machine Learning - Kaiyu Yang

Training LLMs

How are you?

y = f(x; 6p)
D@saf;0;k#fd?H ...

How are you?

Pretrain on l

Internet texts
y = f(x; 61)

=)

| am a senior web developer
with extensive experience in
building high quality sites. |
want to work with you for a
long time. Please send me a
message so that we can
discuss more. Best regards.

Theorem Proving via Machine Learning - Kaiyu Yang

35

Training LLMs

[Ouyang et al., "Training Language Models To
Follow Instructions With Human Feedback", 2022]

How are you? How are you?
l Pretrain on l Align to humans
Internet texts (optional)
y = f(x; 6o) | y = f(x 61) | y = f(x;67)

v

D@saf;0;k#fd?H ...

| am a senior web developer
with extensive experience in
building high quality sites. |
want to work with you for a
long time. Please send me a
message so that we can
discuss more. Best regards.

Theorem Proving via Machine Learning - Kaiyu Yang

Training LLMs

How are you? How are you? How are you?
l Pretrain on l Align to humans 1
Internet texts (optional)
y = f(x; 6o) | y = f(x; 61) | y = f(x;02)
D@saf:o0;k#fd?H ... Hello! I don't have feelings, but I'm

here and ready to assist you with
any information or help you may
need. How can | assist you today?

| am a senior web developer
with extensive experience in
building high quality sites. |
want to work with you for a
long time. Please send me a
message so that we can
discuss more. Best regards.

Theorem Proving via Machine Learning - Kaiyu Yang

37

Training LLMs

How are you? How are you? How are you?
l Pretrain on l Align to humans 1
Internet texts (optional)
y = f(x; 6o) | y = f(x; 61) | y = f(x;02)
D@saf:o0;k#fd?H ... Hello! I don't have feelings, but I'm

here and ready to assist you with
any information or help you may
need. How can | assist you today?

| am a senior web developer
with extensive experience in
building high quality sites. |
want to work with you for a
long time. Please send me a
message so that we can
discuss more. Best regards.

Theorem Proving via Machine Learning - Kaiyu Yang

38

Using LLMs: Prompting vs. Finetuning

How are you? How are you?
l Pretrain on l Align to humans
Internet texts (optional)
y = f(x; 6o) | y = f(x 61) | y = f(x;67)

v

D@saf;0;k#fd?H ...

| am a senior web developer
with extensive experience in
building high quality sites. |
want to work with you for a
long time. Please send me a
message so that we can
discuss more. Best regards.

Theorem Proving via Machine Learning - Kaiyu Yang

Using LLMs: Prompting vs. Finetuning

How are you?

|

y = f(x; 6)

v

D@saf;0;k#fd?H ...

Pretrain on
Internet texts

=)

How are you?

|

y = f(x; 61)

v

Align to humans
(optional)

=)

| am a senior web developer
with extensive experience in
building high quality sites. |

want to work with you for a
long time. Please send me a

message so that we can

discuss more. Best regards.

—

y = f(x;67)

v

negative

Theorem Proving via Machine Learning - Kaiyu Yang

Please classify the sentiment in
this product review by replying
either "positive" or "negative":
" This tent was missing its
stakes, tarp, and fly cover. | had
to cover it in leaves. ™

40

Using LLMs: Prompting vs. Finetuning

How are you? How are you? How are you?
l Pretrain on l Align to humans 1 Finetune
Internet texts (optional) (optional)
y = f(x; 6o) | y = f(x 61) | y = f(x;67) |
D@saf:o0;k#fd?H ... Hello! I don't have feelings, but I'm

here and ready to assist you with
any information or help you may
need. How can | assist you today?

| am a senior web developer
with extensive experience in
building high quality sites. |
want to work with you for a
long time. Please send me a
message so that we can
discuss more. Best regards.

Theorem Proving via Machine Learning - Kaiyu Yang

y = f(x; 03)

41

Using LLMs: Prompting vs. Finetuning

This tent was missing its
stakes, tarp, and fly cover.
| had to cover it in leaves.

How are you? How are you? How are you? ‘
l Pretrain on l Align to humans 1 Finetune
Internet texts (optional) (optional)
y = f(x; 6o) | y = f(x 61) | y = f(x;67) | y = f(x; 63)
D@saf:0;k#fd?H ... Hello! I don't have feelings, but I'm negative

here and ready to assist you with
any information or help you may
need. How can | assist you today?

| am a senior web developer
with extensive experience in
building high quality sites. |
want to work with you for a
long time. Please send me a
message so that we can
discuss more. Best regards.

Theorem Proving via Machine Learning - Kaiyu Yang 42

Using LLMs: Prompting vs. Finetuning

How are you?

|

y = f(x; 6)

v

D@saf;0;k#fd?H ...

Pretrain on
Internet texts

=)

| am a senior web developer
with extensive experience in

How are you?

|

y = f(x; 61)

v

How are you?

Align to humans 1 Finetune
(optional) (optional)
| y = f(x;67) |

v

Hello! | don't have feelings, but I'm
here and ready to assist you with
any information or help you may
need. How can | assist you today?

building high quality sites. |
want to work with you for a
long time. Please send me a

message so that we can

discuss more. Best regards.

Theorem Proving via Machine Learning - Kaiyu Yang

ab:N
Fa+b=b+a
y = f(x; 63)

v

rw [add_comm)]

43

LLMSs for Theorem Proving

Using LLMs to Generate Tactics

[Polu and Sutskever, "Generative Language
Modeling for Automated Theorem Proving", 2020]

* Training
1. Pretrain on generic texts from the Internet
2. Optional: Pretrain on domain-specific texts, e.g., MathOverflow and GitHub
3. Finetune on (goal, tactic) pairs from formal math libraries, e.g., AFP or mathlib

Proof goal Tactic

k:N
Fged((k+1)% (k+1)(k+1)=k+1

\ 4

LLM » rw mod_self

Using LLMs to Generate Tactics

[Polu and Sutskever, "Generative Language
Modeling for Automated Theorem Proving", 2020]

* Training
1. Pretrain on generic texts from the Internet
2. Optional: Pretrain on domain-specific texts, e.g., MathOverflow and GitHub
3. Finetune on (goal, tactic) pairs from formal math libraries, e.g., AFP or mathlib

* Testing
e Sample multiple tactic suggestions at each step and search for proofs
* Evaluate on % of theorems proved under a fixed compute budget

Proof goal Tactic
o > LLM > d_self
Fged((k+1)% (k+1)(k+1)=k+1 g > ;\i/\r/nr;lo _se

unfold gcd

[Han et al., "Proof Artifact Co-training for Theorem Proving with Language Models", 2022]

Proof Artifact Co-training

* LLMs are data-hungry, but human-written proofs are limited (~100K proofs in mathlib)

* 9 auxiliary tasks

Next lemma prediction: Proof goal -> the next lemma to be applied
Type prediction: Partial proof term -> its type

Theorem naming: theorem statement -> its name

[Han et al., "Proof Artifact Co-training for Theorem Proving with Language Models", 2022]

Proof Artifact Co-training

* LLMs are data-hungry, but human-written proofs are limited (~100K proofs in mathlib)

* 9 auxiliary tasks

Next lemma prediction: Proof goal -> the next lemma to be applied
Type prediction: Partial proof term -> its type
Theorem naming: theorem statement -> its name

Tokens

Model elapsed mixl mix2 tactic Pass-rate
Baselines

refl 1.1%
tidy-bfs 9.9%
WebMath > tactic 1B 1.02 32.2%
Co-training (PACT)

WebMath > mixl + tactic 18B 0.08 0.94 40.0%
WebMath > mix2 + tactic 75B 0.09 0.93 46.0%
WebMath > mixl + mix2 + tactic 71B 0.09 0.09 0.91 48.4%

* Key insight: Training on tactic generation + auxiliary tasks is better than tactic generation alone

Theorem Proving via Machine Learning - Kaiyu Yang 48

[Zheng et al., "MiniF2F: A Cross-System Benchmark for Formal Olympiad-Level Mathematics", 2022]

MiniF2F Benchmark

* Math olympiads problems from AMC, AIME, IMO, etc.

* 488 theorems (many w/o proof) for evaluation; no training

[Zheng et al., "MiniF2F: A Cross-System Benchmark for Formal Olympiad-Level Mathematics", 2022]

MiniF2F Benchmark

* Math olympiads problems from AMC, AIME, IMO, etc.
* 488 theorems (many w/o proof) for evaluation; no training

* Open problems:
* How to formalize problems asking for numerical answers?
 How to deal with geometry?

Informal

Solve for a: \/4+\/16+16a+ \/1+\/1+a:6. Show that it is 8.

Lean
theorem mathd_algebra_17 3
(a : R)
(he : real.sqrt (4 + real.sqrt (16 + 16 * a)) + real.sqrt (1 + real.sqrt (1 + a))
a=28:=
begin

end

[Polu et al., "Formal Mathematics Statement Curriculum Learning", 2023]
@OpenAl M

Expert lteration Solving formal math olympiad

* Specialized domains without sufficient existing proofs for training, e.g., MiniF2F

* LLMs perform badly on out-of-domain data

[Polu et al., "Formal Mathematics Statement Curriculum Learning", 2023]
@OpenAl M

Expert lteration Solving formal math olympiad

* Specialized domains without sufficient existing proofs for training, e.g., MiniF2F
* LLMs perform badly on out-of-domain data

* Solution: Iteratively improve the prover on the new domain
1. Train the prover
2. Use the prover to find new proofs
3. Add new proofs to the training data and go back to step 1

[Polu et al., "Formal Mathematics Statement Curriculum Learning", 2023]

@ OpenAl

Expert lteration Solving formal math olympiad

* Specialized domains without sufficient existing proofs for training, e.g., MiniF2F
* LLMs perform badly on out-of-domain data

* Solution: Iteratively improve the prover on the new domain
1. Train the prover
2. Use the prover to find new proofs
3. Add new proofs to the training data and go back to step 1

Model d e pass@l pass@8 Model d e pass@] pass@8

mathlib-valid miniF2F-valid
PACT 512 16 48.4% miniF2F 128 16 23.9% 29.3%
0o 512 16 48.5% 57.6% 0o 128 16 27.6% 31.8%
0o 512 8 46.7% 57.5% 6o 512 8 28.4% 33.6%
01 512 8 56.3% 66.3% 01 512 8 28.5% 35.5%

Theorem Proving via Machine Learning - Kaiyu Yang 53

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]

Pipeline for Learning-based Theorem Proving

* Learning-based provers are complicated

VN

Lean Machine learning model

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]

Pipeline for Learning-based Theorem Proving

* Learning-based provers are complicated

Data 4)

] extraction
— > Training Dataset

Lean Machine learning model

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]

Pipeline for Learning-based Theorem Proving

* Learning-based provers are complicated

Data 4)

] extraction Training
— > Training Dataset >@

Lean Machine learning model

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]

Pipeline for Learning-based Theorem Proving

* Learning-based provers are complicated

Prove theorems by Interaction

] extraction Training >
— > Training Dataset ‘

Lean Machine learning model

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]

Breaking the Barriers in LLMs for Theorem Proving

¢ Jiang et al., LISA, 2021
6
\9° 4’1 Jiang et al., Thor, 2022
“‘ /4 g °) ’
First et al., Baldur, 2023
xo Polu and Sutskever, GPT-f, 2020
Han et al., PACT, 2022

‘ _\V/N Polu et al., 2023

Lample et al., HTPS 2022

Wang et al., DT-Solver, 2023

Theorem Proving via Machine Learning - Kaiyu Yang 58

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]

Breaking the Barriers in LLMs for Theorem Proving

Dataset
available

W\ Jiang et al., LISA, 2021
¢
4@1 . Th
4‘.‘\/ Jiang et al., Thor, 2022
First et al., Baldur, 2023
xo Polu and Sutskever, GPT-f, 2020
Han et al., PACT, 2022

‘ _\V/N Polu et al., 2023

Lample et al., HTPS 2022

AKX K& xX XL

Wang et al., DT-Solver, 2023

Theorem Proving via Machine Learning - Kaiyu Yang 59

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]

Breaking the Barriers in LLMs for Theorem Proving

Dataset Model Code
available | available | available

W\ Jiang et al., LISA, 2021
¢
4@% T
4‘0\/ Jiang et al., Thor, 2022
First et al., Baldur, 2023
xo Polu and Sutskever, GPT-f, 2020
Han et al., PACT, 2022

‘ _\V/N Polu et al., 2023

Lample et al., HTPS 2022

LK K& x XA
X X X X X XX X
X X X X X X X X

Wang et al., DT-Solver, 2023

Theorem Proving via Machine Learning - Kaiyu Yang 60

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]

Breaking the Barriers in LLMs for Theorem Proving

Dataset Model Code Interaction
available | available | available | tool available

Jiang et al., LISA, 2021

Jiang et al., Thor, 2022
First et al., Baldur, 2023
Polu and Sutskever, GPT-f, 2020

Han et al., PACT, 2022

Polu et al., 2023

Lample et al., HTPS 2022

LK K& x XA
X X XX X XX X
X X X X X X X X
XX AL X« «

Wang et al., DT-Solver, 2023

Theorem Proving via Machine Learning - Kaiyu Yang 61

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]

Breaking the Barriers in LLMs for Theorem Proving

Dataset Model Code Interaction | Model size | Compute
available | available | available | tool available | (# params) (hours)

¢ Jiang et al., LISA, 2021 163M

N
AT
t’)J Jiang et al., Thor, 2022

/ x)(/ 700M 1K on TPU

First et al., Baldur, 2023 X X X v 62,000M
xo Polu and Sutskever, GPT-f, 2020 X x x X 774M 40K on GPU
o Han et al., PACT, 2022 X x x / 837M 1.5K on GPU
|‘_\V/N Polu et al., 2023 X X X v 774M 48K on GPU
Lample et al., HTPS 2022 X x x x 600M 34K on GPU
Wang et al., DT-Solver, 2023 / x X x 774M 1K on GPU

Theorem Proving via Machine Learning - Kaiyu Yang 62

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]

Breaking the Barriers in LLMs for Theorem Proving

Dataset Model Code Interaction | Model size | Compute
available | available | available | tool available | (# params) (hours)

¢ Jiang et al., LISA, 2021 163M

AT
t‘jJ Jiang et al., Thor, 2022

/ x)(/ 700M 1K on TPU
First et al., Baldur, 2023 X X X v 62,000M
xo Polu and Sutskever, GPT-f, 2020 X x x X 774M 40K on GPU
Han et al., PACT, 2022 X x x / 837M 1.5K on GPU
\V/N Polu et al., 2023 X X X v 774M 48K on GPU
Lample et al., HTPS 2022 X x x x 600M 34K on GPU
Wang et al., DT-Solver, 2023 / x X x 774M 1K on GPU
LeanDojo (ours) v v v v 517M 120 on GPU

Theorem Proving via Machine Learning - Kaiyu Yang 63

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]

Breaking the Barriers in LLMs for Theorem Proving

Dataset Model Code Interaction | Model size | Compute
available | available | available | tool available | (# params) (hours)

¢ Jiang et al., LISA, 2021 163M

\
AT
t’?J Jiang et al., Thor, 2022

/ x)(/ 700M 1K on TPU
First et al., Baldur, 2023 X X X v 62,000M
xo Polu and Sutskever, GPT-f, 2020 X x x X 774M 40K on GPU
o Han et al., PACT, 2022 X X X v 837M 1.5K on GPU
|‘_\V/N Polu et al., 2023 X X X v 774M 48K on GPU
Lample et al., HTPS 2022 X x x x 600M 34K on GPU
Wang et al., DT-Solver, 2023 / x X x 774M 1K on GPU
LeanDojo (ours) v v v v 517M 120 on GPU

Give researchers access to state-of-the-art LLM-based provers with modest computational costs

Theorem Proving via Machine Learning - Kaiyu Yang 64

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]

Retrieval-Augmented Prover

 Existing methods only see the current proof state, w/o knowledge of premises

State k:N —

Fged((k+1)% (k+1)(k+1)=k+1 — rewrite mod_self

All accessible premises

Tactic
in the math library

theorem mod_self (n : nat) : n % n =0

Inputs Outputs
(shifted right)

theorem gcd_zero_left (x : nat) : ged 0 x = x

[Vaswani et al., NeurlPS 2017]

33K on average

def gcd : nat -+ nat - nat

Kaiyu Yang et al. - LeanDojo: Theorem Proving with Retrieval-Augmented Language Models 65

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]

Retrieval-Augmented Prover

 Existing methods only see the current proof state, w/o knowledge of premises

* Given a state, we retrieve premises from the set of all accessible premises

k:N

State | ocd ((k+1) % (k+1)) (k+1)=k+1

All accessible premises
in the math library

theorem mod_self (n : nat) : n % n =

theorem gcd_zero_left (x : nat) : gecd

»
I
»

33K on average

def gcd : nat -+ nat - nat

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]

Retrieval-Augmented Prover

 Existing methods only see the current proof state, w/o knowledge of premises

* Given a state, we retrieve premises from the set of all accessible premises

k:N
Fged((k+1)% (k+1)(k+1)=k+1
All accessible premises

in the math library

theorem mod_self (n : nat) : n % n = ____*LEEEEQE£>>__*

State

theorem gcd_zero_left (x : nat) : gcd 0 x
Maximum

33K on average cosine similarity

def gcd : nat - nat - nat o Encoder

w

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]

Retrieval-Augmented Prover

 Existing methods only see the current proof state, w/o knowledge of premises

* Given a state, we retrieve premises from the set of all accessible premises

k:N
Fged((k+1)% (k+1)(k+1)=k+1
All accessible premises

in the math library

theorem mod_self (n : nat) : n % n = ____*LEEEEQE£>>__*

State

theorem gcd_zero_left (x : nat) : gcd 0 x

theorem mod_1t (x : nat) {y : nat} (h : 0<y) : x % y<y
ybangn1. theorem mod_self (n : nat) : n % n =
33K on average cosine similarity theorem mod_eq_of_1t {a b : nat} (h : a<b) : a’% b=a
theorem zero_mod (b : nat) : % b =

w

def ‘ged : nat ° mat - nat Retrieved premises

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]

Retrieval-Augmented Prover

 Existing methods only see the current proof state, w/o knowledge of premises

* Given a state, we retrieve premises from the set of all accessible premises

* Retrieved premises are concatenated with the state and used for tactic generation

All accessible premises
in the math library

k:N

State | ocd ((k+1) % (k+1)) (k+1)=k+1

theorem mod_self (n : nat)

def gcd : nat -+ nat - nat

theorem gcd_zero_left (x :

:n % n-=

nat)

33K on average

. ged

X

X

—| Encoder >—

Maximum
cosine similarity

“

theorem mod_1t (x : nat) {y : nat} (h : 0 < y)
theorem mod_self (n : nat) : n % n =

theorem mod_eq_of_1t {a b : nat} (h : a < b)
theorem zero_mod (b : nat) : % b =

Retrieved premises

txhy <y

:a’%b=a

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]

Retrieval-Augmented Prover

 Existing methods only see the current proof state, w/o knowledge of premises
* Given a state, we retrieve premises from the set of all accessible premises

* Retrieved premises are concatenated with the state and used for tactic generation

< —{ concaty>— >— rewri
der-decod
State - god ((k+1) % (k+1)) (k+1) =k + 1 Cor?cat Encoder-decoder rewrite mod_self
All accessible premises

Tactic
in the math library

theorem mod_self (n : nat) : n % n = —'IM>—'

th d left : nat) : gcd = —’m—'
eoren jged_zero_1eft| (x : nat) : ge o - theorem mod_1t (x : nat) {y : nat} (h : <y) :xhy<y
. I-\/IaXI.mLfm. theorem mod_self (n : nat) : n)% n =
33K on average : cosine similarity theorem mod_eq_of_1t {a b : nat} (h : a<b) : a’ b =a
theorem zero_mod (b : nat) : 0 % b =

def ‘ged : nat ° mat - nat Retrieved premises

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", 2023]

ChatGPT for Theorem Proving in Lean

GPT-4 currently has a cap of 25 messages every 3 hours.

ChatGPT may produce inaccurate information about people, places, or facts. ChatGPT May 24 Version

Kaiyu Yang et al. - LeanDojo: Theorem Proving with Retrieval-Augmented Language Models 71

[Wu et al., "Autoformalization with Large Language Models", 2022]

Autoformalization

* LLMs translate informal math into formal math

* Very useful task, but less well-defined. Hard to evaluate

N
Case Study 2 Question: Case Study 3 Question:
Natural Language version: "When all Natural language version: "Let f be a linear
the girls at Madeline’s school line up function for which f(6) — f(2) = 12. What is
in rows of eight, there are seven left f(12) — f(2)? The final answer is 30." Trans-
over. If instead they line up in rows of late the natural language version to an Isabelle
four, how many are left over? The final version:
answer is 3." Translate the natural lan- '
guage version to an Isabelle version:
Codex output:
PaLM output: theorem
theorem fixes f :: "real \<Rightarrow> real"
fixesn::nat assumes "linear f"
assumes "nmod 8 =7" "f6-f2=12"
shows "nmod 4 = 3" shows "f 12 - £ 2 =30"
\ J _)

Theorem Proving via Machine Learning - Kaiyu Yang 72

[Jiang et al., "Draft, Sketch, and Prove: Guiding Formal Theorem Provers with Informal Proofs", 2023]

Guiding Formal Provers with Informal Proofs

Formal sketch Verified formal proof
Statement Informal proof have cl: “1%*28 = n*4"” have cl: “1%28 = n*4"”
ek S e using assms using assms
If gcd(n, 4) =1 and heicgciV\.I 28a=g';:.€4a. Jdan) = a <proof> by (smt (2z3) prod gcd lcm nat)
= then have c2: “n = 1%28/4" then have c2: “n = 1*28/4"
lem(n, 4) .28, Thenn = 1-28/4 =7, i s
show that nis 7. e | | ... E— || wesnansrnssns S
completing the proof. W - then show ?thesis - then show ?thesis
N T TN E T TEE I NI I TN TR ST TSRS E TR T I RIS <proof> by auto
Informal Autoformalizer Off-the-shelf
...... P'°°f W"te’ . @ s ErOve
Draft informal proof Generate formal sketch Prove remaining gaps

Theorem Proving via Machine Learning - Kaiyu Yang 73

LLM-based Proof Automation Tools for Lean

Bridging Machine Learning and Theorem Proving

Lean Machine learning model

Bridging Machine Learning and Theorem Proving

Machine learning researchers work on theorem proving

| Nt el

Lean Machine learning model

Bridging Machine Learning and Theorem Proving

Machine learning researchers work on theorem proving

Lean < Machine learning model

Learning-based proof automation tools for Lean users

Kaiyu Yang et al. - LeanDojo: Theorem Proving with Retrieval-Augmented Language Models 77

Bridging Machine Learning and Theorem Proving

Machine learning researchers work on theorem proving

Lean < Machine learning model

Learning-based proof automation tools for Lean users

* Run on CPUs reasonably fast
* Integrated into VSCode

* Care about a specific domain, not aggregated performance on mathlib

Kaiyu Yang et al. - LeanDojo: Theorem Proving with Retrieval-Augmented Language Models 78

Tools for Tactic Suggestion

M) : Monotone f =V n, fnsf (n+ 1) := by

v Examples.lean:43:2

¥ Tactic state

Monotone f = V (n : N), fnsf (n+ 1)

» All Messages (2)

[Welleck and Saha, “limstep: LLM proofstep suggestions in Lean”]
https://github.com/wellecks/limstep

Theorem Proving via Machine Learning - Kaiyu Yang 79

https://github.com/wellecks/llmstep

Tools for Premise Selection

* Built-in tactics such as library _search, apply?, exact?

README.md

Premise selection for Lean

eoe TacticTest.lean — lean-premise-selection DB m o
TacticTest.lean 4, M Tests/TacticTest.Jean 9o ® M x - Leaninfoview
inport Hathlib ¥ TacticTest.lean:12:10 RTINS
import Mathlib.Algebra.Group.Defs N
inport PreniseSelection. Tactic ¥ Tactic state “ Vv
import PremiseSelection.Widget M Type u

inst+ : RightCancelNonoid H
open PreniseSelection ab:h

rasb=bea=1

variable {H : Type u} [RightCanceltonoid K] (a b : M} v Premise Selection

, examleib=axbea=ii-by(Show failed suggestions.
ru Leq_conn] Geq_conn rw [eq_com] - b=axbea=1
, | susgest Jremises @nul_left_eq self # apply mul_left_eq_self
¥ Gone_nul. x
| ' enul_rignt_concel_iff

variable [ConnSemigroup 61 Saul_one

a:h

example t¥abc:G,ax®ro)=bx@axo) =ty @nd.intro
, L @Iff.intro]
intros a b c
suggest_premises
apply mul_left_conn
)

X
X
@nul_left_cancel iff X
X
V]

apply Iff.intro- asb=b—a=1

@nul_right_eqself X

@le_rfl X

@nits.nul_left_inj X

@le_nul_of_le_of_one_le X

example (a b c:Nat) (J:acd) :0+a=as=by(@le_antisym X
—print_snt_features
suggest_premises
apply zero_add

N > All Messages (4) 1

@le_nul_of_one_le_of_le X
finished checking 14 items.

[Piotrowski et al. "Machine-Learned Premise Selection for Lean"]
https://github.com/BartoszPiotrowski/lean-premise-selection

Theorem Proving via Machine Learning - Kaiyu Yang

https://github.com/BartoszPiotrowski/lean-premise-selection

Tools for Interfacing with GPT-4

Sagredo: automated dialogue between GPT and Lean.

List_append_length.lean — mathlib4-2

= List_append_length.lean 1 @ ¢ ® 0

test > Sagredo £ List_append_length.lean > @) example
import Mathlib.Tactic.GPT.Sagredo.Widget
import Mathlib.Algebra.Order.Ring.Abs
import Mathlib.Data.Nat.Order.Basic
import Mathlib.Tactic.Ring

open List

]

i
: Type) (LM : List) : (L ++ M ++ L).length = (M ++ L ++ L).length

v List_append_length.lean:9:6
¥ Tactic state
No goals

v Sagredo ® Auto-send

| am going to show you an incomplete proof and the accompanying goal
state. | will ask you to complete the proof step by step, adding one
tactic step in each response.

Here is the proof thus far:
N
example (a : Type) (LM : List a) : (L ++ M ++ L).length =
(M ++ L ++ L).length := by
sorry

» All Messages (0)

[Morrison et al., “Sagredo: automated dialogue between GPT and Lean”]
https://www.youtube.com/watch?v=CEwWRMTOGpKo

Kaiyu Yang et al. - LeanDojo: Theorem Proving with Retrieval-Augmented Language Models

81

https://www.youtube.com/watch?v=CEwRMT0GpKo

Thank You

Theorem Proving via Machine Learning - Kaiyu Yang

82

