On a formalization of Gromov's h-principle and Smale's sphere eversion theorem in Lean

> Oliver Nash (Imperial College)

> > 8 Sep, 2023

Joint work with Floris van Doorn and Patrick Massot

- Project completed in December 2022
- About a year with three people working part-time

Why formalise the sphere eversion theorem?

- It's fun.
- It's beautiful mathematics.
- It's a corollary of a very useful theorem of Gromov which belongs in our mathlib library.
- Differential topology is a relatively unexplored and underrepresented subject in formalisation.
- Test the limits (if any) of contemporary computerformalisation technology.

Immersions

- We care about smooth manifolds so we care about maps between them.
- The derivative of a smooth map $f: M \to N$ is a (dependent) family of linear maps.
- A map *f* is an immersion if these linear maps are injective.
- Two basic questions:
 - Do there exist any immersions $M \rightarrow N$?
 - Are two immersions (regularly) homotopic?

From immersions to eversions

- The *inclusion map* is a natural immersion $i: S^n \to \mathbb{R}^{n+1}$.
- Assume n even for simplicity (odd case is easier).
- The antipodal map yields a second distinguished immersion $a: S^n \to \mathbb{R}^{n+1}$.
- Since n is even, a is orientation-reversing.
- **Question**: are *i* and *a* (regularly) homotopic?
- Such a homotopy is called an *eversion*.

Sphere eversion

- Topological obstruction gives necessary condition: n = 2 or n = 6.
- Surprising result: necessary condition is sufficient!

Theorem (Smale 1957). There exists an eversion of S^2 .

theorem Smale : \exists f : $\mathbb{R} \to \mathbb{S}^2 \to \mathbb{R}^3$, (cont_mdiff ($\mathcal{I}(\mathbb{R}, \mathbb{R})$.prod (\mathcal{R} 2)) $\mathcal{I}(\mathbb{R}, \mathbb{R}^3) \propto |$ f) \land (f 0 = λ x, x) \land (f 1 = λ x, -x) \land \forall t, immersion (\mathcal{R} 2) $\mathcal{I}(\mathbb{R}, \mathbb{R}^3)$ (f t) := Enter Gromov

We formalised Smale's result as a corollary of a much more powerful theorem, due to Gromov which:

- is general: applies to maps between any manifolds $M \rightarrow N$,
- is parametric: applies to families of maps: $P \times M \rightarrow N$,
- is relative: can prescribe behaviour on a set $C \subseteq P \times M$,
- allows control: produces maps which are aribitrarily close to a given candidate map,
- generalises well beyond the concept of immersion.

Differential relations

- For simplicity consider maps of vector spaces $f: E \rightarrow F$.
- Given a relation

 $R \subseteq E \times F,$

a function $f: E \to F$ is a solution if $(x, f(x)) \in R$ for all x.

• Given a (first-order) differential relation

 $R \subseteq E \times F \times Hom(E, F),$

a differentiable function $f: E \to F$ is a solution if $(x, f(x), f'(x)) \in R$ for all x.

• Example: the immersion relation is $I = \{(x, y, \phi) \mid \phi \text{ is injective}\}.$

Formal solutions and the h-principle

- A formal solution of a differential relation is a pair of maps f: E → F and g: E → Hom(E, F) such that (x, f(x), g(x)) ∈ R for all x.
- A formal solution is a true (holonomic) solution if g = f'.
- A relation is said to satisfy the **h-principle** if any formal solution is (regularly) homotopic to a true solution.
- Gromov's theorem states that if a relation is open and satisfies a **convexity condition**, it satisfies the h-principle.
- The positive-codimension immersion relation obviously satisfies the above conditions.
- Sphere eversion is thus reduced to existence of a formal solution (which is easy).

Gromov's theorem

Theorem (Gromov 1973). Let R be an open, ample differential relation for maps between two smooth manifolds M and N. Then R satisfies the parametric, relative, C^0 -dense h-principle.

I.e., given any smooth manifold P, closed set $C \subseteq P \times M$, metric on N, error function $\epsilon : M \to (0, \infty)$, and smooth family \mathcal{F}_0 of formal solutions to R, which is holonomic near C, then there exists a regular homotopy of smooth families of solutions $t \mapsto \widehat{\mathcal{F}}_t$ such that:

• $\widehat{\mathcal{F}}_0 = \mathcal{F}_0$,

- $\widehat{\mathcal{F}}_1$ is holonomic,
- $\hat{\mathcal{F}}_t$ is independent of t near C,
- the base map of $\hat{\mathcal{F}}_t$ is ϵ -close to that of \mathcal{F}_0 .

Gromov's theorem in Lean

```
theorem Gromov {R : rel_mfld \mathcal{I}(\mathbb{R}, \mathbb{R}^n) \ M \ \mathcal{I}(\mathbb{R}, \mathbb{R}^n') \ M'}
 (hRample : R.ample) (hRopen : is_open R)
\{C : set (P \times M)\} (hC : is_closed C)
\{\varepsilon : M \to \mathbb{R}\}\ (h\varepsilon : \forall x, 0 < \varepsilon x) (h\varepsilon' :  continuous \varepsilon)
 (\mathcal{F}_0 : family_formal_sol \mathcal{I}(\mathbb{R}, \mathbb{R}^d) P R)
 (hhol : \forall^{f} (p : P × M) in \mathcal{N}^{s} C,
    (\mathcal{F}_0 \text{ p.1}).\text{is_holonomic_at p.2}) :
\exists \mathcal{F} : family_formal_sol
        (\mathcal{I}(\mathbb{R}, \mathbb{R}).prod \mathcal{I}(\mathbb{R}, \mathbb{R}^d)) (\mathbb{R} \times P) R,
    (\forall p x, \mathcal{F} (0, p) x = \mathcal{F}_0 p x) \land
    (\forall p, (\mathcal{F} (1, p)).to_one_jet_sec.is_holonomic) \land
    (\forall f (p : P \times M) in \mathcal{N}^s C, \forall t,
        \mathcal{F} (t, p.1) p.2 = \mathcal{F}_0 p.1 p.2) \wedge
    (\forall t p x, dist ((\mathcal{F} (t, p)).bs x) ((\mathcal{F}_0 p).bs x) \leq \varepsilon x)
```

Why convexity

Theorem. Let $f : \mathbb{R} \to F$, $f_n : \mathbb{R} \to F$, all smooth, $\Omega \subseteq F$ and suppose that:

- $f_n \rightarrow f$ in the C^0 topology,
- $f'_n(s) \in \Omega$ for all n, s,

then $f'(s) \in \overline{\text{Conv}(\Omega)}$ for all s, where Conv denotes convex hull.

Proof.

$$\frac{f(s+1/n)-f(s)}{1/n} \approx \frac{f_n(s+1/n)-f_n(s)}{1/n}$$
$$= \int_0^1 f'_n(s+u/n) du \in \overline{\operatorname{Conv}(\Omega)}$$

Deformation using families of loops

- We use a family loops $\gamma: E \times S^1 \to \Omega \subseteq F$ to modify f so that its derivative lies in Ω .
- We require $\overline{\gamma_x} = \int_{S^1} \gamma_x = f'(x)$ for all x in E.

Theillière corrugation (convex integration)

Theorem (Theillière, 2018). Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be C^1 and $\gamma : \mathbb{R}^n \times S^1 \to \mathbb{R}^m$ be a C^1 family of loops such that $\overline{\gamma_x} = \partial_j f(x)$ for some $j \in 1, 2, ..., n$. Given N in \mathbb{R} let:

$$\widehat{f}_N(x) = f(x) + \frac{1}{N} \int_0^{Nx_j} (\gamma_x(s) - \overline{\gamma}_x) \, ds,$$

then for any compact $K \subseteq \mathbb{R}^n$ and $\epsilon > 0$ if N is large enough we have:

- $\|\widehat{f}_N(x) f(x)\| < \epsilon$,
- $\|\partial_i \widehat{f}_N(x) \partial_i f(x)\| < \epsilon \text{ for } i \neq j$,
- $\|\partial_j \widehat{f}_N(x) \gamma_x(Nx_j)\| < \epsilon$,

for all $x \in K$.

Theillière in Lean

def corrugation (π : E \rightarrow L[\mathbb{R}] \mathbb{R}) $(N : \mathbb{R}) (\gamma : E \rightarrow \text{loop } F) : E \rightarrow F :=$ λ x, (1/N) · \int t in 0..(N* π x), (γ x t - (γ x).average) def corrugation.remainder ($\pi : E \rightarrow \mathbb{R}$) (N : \mathbb{R}) (γ : $\mathbb{E} \rightarrow \text{loop F}$) : $\mathbb{E} \rightarrow (\mathbb{E} \rightarrow \mathbb{L}[\mathbb{R}] \mathbb{F})$:= λ x, (1/N) · \int t in O...(N* π x), ∂_1 (λ x t, (γ x).normalize t) x t lemma fderiv_corrugated_map (hN : N \neq 0) $(h\gamma_diff : C \ 1 \ \gamma) \{f : E \rightarrow F\} (hf : C \ 1 \ f) \{x\}$ (p : dual_pair E) (hf γ : (γ x).average = D f x p.v) : D (f + corrugation p. π N γ) x = p.update (D f x) (γ x (N*p. π x)) + corrugation.remainder p. π N γ x := lemma remainder_c0_small_on {K : set E} (hK : is_compact K)

```
(h\gamma_diff : C 1 1\gamma) {\varepsilon : \mathbb{R}} (\varepsilon_pos : 0 < \varepsilon) : \forall^{f} N in at_top, \forall x \in K,
```

 $\|$ corrugation.remainder π N γ x $\|$ < ε :=

Comments on effort

The proof is a three-stage argument:

- Supply of loops: challenging but in line with expectations,
- Theillière's convex integration: challenging but in line with expectations,
- Globalisation: challenging, beyond expectations.

Lessons learned and impact on mathlib

- Our manifold library works well.
- We can formalise non-trivial results in differential topology.
- Smooth fibre bundles are surprisingly tricky.
- Monolithic library essential as we draw on many subject areas.
- Significant benefit to mathlib (added many results on filters, point-set topology, calculus, convolutions, barycentric coordinates, convexity, bundle theory, ...).

Dependency graph

A significant aid to collaboration:

Additional resources

- We wrote a paper: van Doorn, Massot, and Nash, Formalising the h-Principle and Sphere Eversion, Proceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs, 2023, url. (We might even write another.)
- Interactive website (well worth a visit): https://leanprover-community.github.io/sphere-eversion
- Previous talks:
 - van Doorn CPP 2023
 - van Doorn Lean in Lyon 2022
 - Massot Lean in Lyon 2022