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Why formalise the sphere eversion theorem?

● It’s fun.

● It’s beautiful mathematics.

● It’s a corollary of a very useful theorem of Gromov
which belongs in our mathlib library.

● Differential topology is a relatively unexplored and
underrepresented subject in formalisation.

● Test the limits (if any) of contemporary computer-
formalisation technology.



Immersions

● We care about smooth manifolds so we care about
maps between them.

● The derivative of a smooth map f ∶ M → N is a
(dependent) family of linear maps.

● A map f is an immersion if these linear maps are
injective.

● Two basic questions:

– Do there exist any immersions M →N?

– Are two immersions (regularly) homotopic?



From immersions to eversions

● The inclusion map is a natural immersion i ∶ Sn → Rn+1.

● Assume n even for simplicity (odd case is easier).

● The antipodal map yields a second distinguished immersion
a ∶ Sn → Rn+1.

● Since n is even, a is orientation-reversing.

● Question: are i and a (regularly) homotopic?

● Such a homotopy is called an eversion.



Sphere eversion

● Topological obstruction gives necessary condition: n = 2 or
n = 6.

● Surprising result: necessary condition is sufficient!

Theorem (Smale 1957).There exists an eversion of S2.

theorem Smale : ∃ f : R → S2 → R3,
(cont_mdiff (I(R, R).prod (R 2)) I(R, R3) ∞ ↿f) ∧
(f 0 = λ x, x) ∧
(f 1 = λ x, -x) ∧
∀ t, immersion (R 2) I(R, R3) (f t) :=



Enter Gromov

We formalised Smale’s result as a corollary of a much more
powerful theorem, due to Gromov which:

● is general: applies to maps between any manifolds M →N ,

● is parametric: applies to families of maps: P ×M →N ,

● is relative: can prescribe behaviour on a set C ⊆ P ×M ,

● allows control: produces maps which are aribitrarily close
to a given candidate map,

● generalises well beyond the concept of immersion.



Differential relations

● For simplicity consider maps of vector spaces f ∶ E → F .

● Given a relation

R ⊆ E ×F,

a function f ∶ E → F is a solution if (x, f(x)) ∈ R for all x.

● Given a (first-order) differential relation

R ⊆ E ×F ×Hom(E,F ),

a differentiable function f ∶ E → F is a solution if
(x, f(x), f ′(x)) ∈ R for all x.

● Example: the immersion relation is I = {(x,y,φ) ∣ φ is injective}.



Formal solutions and the h-principle

● A formal solution of a differential relation is a pair of maps
f ∶ E → F and g ∶ E →Hom(E,F ) such that (x, f(x), g(x)) ∈ R
for all x.

● A formal solution is a true (holonomic) solution if g = f ′.

● A relation is said to satisfy the h-principle if any formal
solution is (regularly) homotopic to a true solution.

● Gromov’s theorem states that if a relation is open and
satisfies a convexity condition, it satisfies the h-principle.

● The positive-codimension immersion relation obviously sat-
isfies the above conditions.

● Sphere eversion is thus reduced to existence of a formal
solution (which is easy).



Gromov’s theorem
Theorem (Gromov 1973). Let R be an open, ample differential
relation for maps between two smooth manifolds M and N .
Then R satisfies the parametric, relative, C0-dense h-principle.

I.e., given any smooth manifold P , closed set C ⊆ P ×M , metric
on N , error function ε ∶M → (0,∞), and smooth family F0 of
formal solutions to R, which is holonomic near C, then there
exists a regular homotopy of smooth families of solutions t↦ F̂t
such that:

● F̂0 = F0,

● F̂1 is holonomic,

● F̂t is independent of t near C,

● the base map of F̂t is ε-close to that of F0.



Gromov’s theorem in Lean

theorem Gromov {R : rel_mfld I(R, R^n) M I(R, R^n′) M′}
(hRample : R.ample) (hRopen : is_open R)
{C : set (P × M)} (hC : is_closed C)
{ε : M → R} (hε : ∀ x, 0 < ε x) (hε′ : continuous ε)
(F0 : family_formal_sol I(R, R^d) P R)
(hhol : ∀f (p : P × M) in N s C,

(F0 p.1).is_holonomic_at p.2) :
∃ F : family_formal_sol

(I(R, R).prod I(R, R^d)) (R × P) R,
(∀ p x, F (0, p) x = F0 p x) ∧
(∀ p, (F (1, p)).to_one_jet_sec.is_holonomic) ∧
(∀f (p : P × M) in N s C, ∀ t,
F (t, p.1) p.2 = F0 p.1 p.2) ∧

(∀ t p x, dist ((F (t, p)).bs x) ((F0 p).bs x) ≤ ε x)



Why convexity
Theorem. Let f ∶ R → F , fn ∶ R → F , all smooth, Ω ⊆ F and
suppose that:

● fn → f in the C0 topology,

● f ′n(s) ∈ Ω for all n, s,

then f ′(s) ∈ Conv(Ω) for all s, where Conv denotes convex hull.

Proof.

f(s + 1/n) − f(s)
1/n ≈ fn(s + 1/n) − fn(s)

1/n

= ∫
1

0
f ′n(s + u/n)du ∈ Conv(Ω)



Deformation using families of loops

● We use a family loops γ ∶ E × S1 → Ω ⊆ F to modify f so
that its derivative lies in Ω.

● We require γx = ∫S1 γx = f ′(x) for all x in E.



Theillière corrugation (convex integration)
Theorem (Theillière, 2018). Let f ∶ Rn → Rm be C1 and γ ∶
Rn ×S1 → Rm be a C1 family of loops such that γx = ∂jf(x) for
some j ∈ 1,2, . . . n. Given N in R let:

f̂N(x) = f(x) +
1

N ∫
Nxj

0
(γx(s) − γ̄x)ds,

then for any compact K ⊆ Rn and ε > 0 if N is large enough we
have:

● ∥f̂N(x) − f(x)∥ < ε,

● ∥∂if̂N(x) − ∂if(x)∥ < ε for i ≠ j,

● ∥∂jf̂N(x) − γx(Nxj)∥ < ε,

for all x ∈K.



Theillière in Lean

def corrugation (π : E →L[R] R)
(N : R) (γ : E → loop F) : E → F :=

λ x, (1/N) ⋅ ∫ t in 0..(N∗π x), (γ x t - (γ x).average)

def corrugation.remainder (π : E → R)
(N : R) (γ : E → loop F) : E → (E →L[R] F) :=

λ x, (1/N) ⋅ ∫ t in 0..(N∗π x),
∂1 (λ x t, (γ x).normalize t) x t

lemma fderiv_corrugated_map (hN : N ≠ 0)
(hγ_diff : C 1 ↿γ) {f : E → F} (hf : C 1 f) {x}
(p : dual_pair E) (hfγ : (γ x).average = D f x p.v) :
D (f + corrugation p.π N γ) x =

p.update (D f x) (γ x (N∗p.π x)) +
corrugation.remainder p.π N γ x :=

lemma remainder_c0_small_on {K : set E} (hK : is_compact K)
(hγ_diff : C 1 ↿γ) {ε : R} (ε_pos : 0 < ε) :
∀f N in at_top, ∀ x ∈ K,
∥corrugation.remainder π N γ x∥ < ε :=



Comments on effort

The proof is a three-stage argument:

● Supply of loops: challenging but in line with expec-
tations,

● Theillière’s convex integration: challenging but in
line with expectations,

● Globalisation: challenging, beyond expectations.



Lessons learned and impact on mathlib

● Our manifold library works well.

● We can formalise non-trivial results in differential topology.

● Smooth fibre bundles are surprisingly tricky.

● Monolithic library essential as we draw on many subject
areas.

● Significant benefit to mathlib (added many results on fil-
ters, point-set topology, calculus, convolutions, barycentric
coordinates, convexity, bundle theory, ...).



Dependency graph

A significant aid to collaboration:



Additional resources

● We wrote a paper: van Doorn, Massot, and Nash, For-
malising the h-Principle and Sphere Eversion, Proceedings
of the 12th ACM SIGPLAN International Conference on
Certified Programs and Proofs, 2023, url.
(We might even write another.)

● Interactive website (well worth a visit):
https://leanprover-community.github.io/sphere-eversion

● Previous talks:

– van Doorn CPP 2023

– van Doorn Lean in Lyon 2022

– Massot Lean in Lyon 2022

https://doi.org/10.1145/3573105.3575688
https://leanprover-community.github.io/sphere-eversion
https://www.youtube.com/watch?v=wCubc0t3xJY&list=PLyrlk8Xaylp6EB6XceHKB-UKBfmYYJAbH&index=15
https://www.youtube.com/watch?v=Evru5QHt-KU&list=PLlF-CfQhukNliKyDqb5rYKe-r9RbpQFZd&index=5
https://www.youtube.com/watch?v=QBLL48Z8gcg&list=PLlF-CfQhukNliKyDqb5rYKe-r9RbpQFZd&index=2

