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e Project completed in December 2022

e About a year with three people working part-time



It’s fun.

It's beautiful mathematics.

It’s a corollary of a very useful theorem of Gromov
which belongs in our mathlib library.

Differential topology is a relatively unexplored and
underrepresented subject in formalisation.

Test the limits (if any) of contemporary computer-
formalisation technology.



e \We care about smooth manifolds so we care about
maps between them.

e The derivative of a smooth map f: M - N is a
(dependent) family of linear maps.

e A map f is an immersion if these linear maps are
injective.

e [WO basic questions:
— Do there exist any immersions M —- N7

— Are two immersions (regularly) homotopic?



The inclusion map is a natural immersion i: S™ —» R+l

Assume n even for simplicity (odd case is easier).

The antipodal map yields a second distinguished immersion
a:S" - Rl

Since n is even, a is orientation-reversing.

Question: are 7 and a (regularly) homotopic?

Such a homotopy is called an eversion.



e Topological obstruction gives necessary condition: n=2 or
n = 0.

e Surprising result: necessary condition is sufficient!

Theorem (Smale 1957). There exists an eversion of S<.

theorem Smale : 3 f : R - S22 — R3,
(cont_mdiff (Z(R, R).prod (R 2)) Z(R, R3) oo 1£f) A
(f 0=Ax, x) A
(f 1 =ANx, -x) A

V t, immersion (R 2) Z(R, R3) (f t) :=



We formalised Smale’s result as a corollary of a much more
powerful theorem, due to Gromov which:

e iS general: applies to maps between any manifolds M —- N,

e iS parametric: applies to families of maps: Px M — N,

e iS relative: can prescribe behaviour on a set Cc Px M,

e allows control: produces maps which are aribitrarily close
to a given candidate map,

generalises well beyond the concept of immersion.



For simplicity consider maps of vector spaces f: E — F.

Given a relation

Rc ExF,

a function f: E — F is a solution if (z, f(x)) € R for all z.

Given a (first-order) differential relation

RcExFxHom(E,F),

a differentiable function f: E - F' is a solution if
(x, f(x), f'(x)) e R for all x.

Example: the immersion relationis I = {(x,y,¢) | ¢ is injective}.



e A formal solution of a differential relation is a pair of maps
f:E—-F and g: E -~ Hom(E, F) such that (z, f(x),g9(x)) € R
for all .

e A formal solution is a true (holonomic) solution if g = f'.

e A relation is said to satisfy the h-principle if any formal
solution is (regularly) homotopic to a true solution.

e Gromov's theorem states that if a relation is open and
satisfies a convexity condition, it satisfies the h-principle.

e [ he positive-codimension immersion relation obviously sat-
isfies the above conditions.

e Sphere eversion is thus reduced to existence of a formal
solution (which is easy).



Theorem (Gromov 1973). Let R be an open, ample differential
relation for maps between two smooth manifolds M and N.
Then R satisfies the parametric, relative, CO-dense h-principle.

I.e., given any smooth manifold P, closed set C' c Px M, metric
on N, error function e: M — (0,00), and smooth family Fy of
formal solutions to R, which is holonomic near C, then there
exists a regular homotopy of smooth families of solutions t — F;
such that:

* Fo=Fo,
e F1 is holonomic,
o F; is independent of t near C,

e the base map of F; is e-close to that of Fo-



theorem Gromov {R : rel_mfld Z(R, R n) M Z(R, R~n’) M}
(hRample : R.ample) (hRopen : is_open R)
{C : set (P x M)} (hC : is_closed C)
{e¢ : M > R} (he : V x, 0 < € x) (he' : continuous €)
(Fo : family_formal_sol Z(R, R~d) P R)
(hhol : Vf (p : P x M) in NS C,
(Fo p.-1).is_holonomic_at p.2)
3 F : family_formal_sol
(Z(R, R).prod Z(R, R~d)) (R x P) R,
(Vpx, FQO,p x=Fpzx) A
(V p, (F (1, p)).to_one_jet_sec.is_holonomic) A
(Vf (p : P x M) in s C, V t,
F (t, p-1) p.2 = Fo p.-1 p.2) A
(V t p x, dist ((F (t, p)).bs x) ((Fo p).bs x) < € x)



Theorem. Let f:R—> F, f,:R > F, all smooth, 2 c F and
suppose that:

o fn— f in the CO topology,

e fL(s)e2 for all n, s,

then f'(s) e Conv(S2) for all s, where Conv denotes convex hull.

Proof.

Fs+1/n) = £(5) _ fuls+ 1/n) — fuls)
1/n 1/n

= Ll fr(s+u/n)due Conv(2)




Deformation using families of loops

e We use a family loops ~v: Ex Sl > Q c F to modify f so
that its derivative lies in 2.

e We require 7z = [¢1v2 = f'(z) for all z in E.



Theorem (Theilliére, 2018). Let f:R*» - R™ pe Cl and ~ :
R x S1 - R™ be a C! family of loops such that 7z = 9;f(x) for
some j€1,2,...n. Given N in R let:

F(@) = f@) v [ () - ) ds,

then for any compact K cR"™ and ¢e>0 if N is large enough we
have:

o |fn(z)-f(z)]<e
o |0ifn(z) - 0;f(x)]| <e forizj,
o [0jfn(z) —yu(Nxj)| <e,

for all x ¢ K.



def corrugation (m : E —L[R] R)
(N: R) (y : E—- loopF) : E > F :=
Ax, (1/N) - [ t in O0..(N*7w x), (y x t - (y x).average)

def corrugation.remainder (m : E — R)

(N: R) (y : E—- loopF) : E—~ (E-L[R] F) :=
Ax, (1/N) - [ t in O..(N*mw x),

J1 (A x t, (y x).normalize t) x t

lemma fderiv_corrugated_map (hN : N # 0)
(hy_diff : C 1 1y) {f : E - F} (hf : C 1 £) {x}
(p : dual_pair E) (hfy : (y x).average =D f x p.Vv)
D (f + corrugation p.m N vy) x =
p.update (D f x) (y x (N*p.m x)) +
corrugation.remainder p.m N y x :=

lemma remainder_cO_small_on {K : set E} (hK : is_compact K)
(hy_diff : C 1 1y) {e : R} (e_pos : 0 < ¢)
V¥ N in at_top, V x € K,
|corrugation.remainder w N vy x| < € :=



The proof is a three-stage argument:

e Supply of loops: challenging but in line with expec-
tations,

e T heilliere's convex integration: challenging but in
line with expectations,

e Globalisation: challenging, beyond expectations.



Our manifold library works well.

We can formalise non-trivial results in differential topology.

Smooth fibre bundles are surprisingly tricky.

Monolithic library essential as we draw on many subject
areas.

Significant benefit to mathlib (added many results on fil-
ters, point-set topology, calculus, convolutions, barycentric
coordinates, convexity, bundle theory, ...).



Dependency graph

A significant aid to collaboration:




e We wrote a paper: van Doorn, Massot, and Nash, For-
malising the h-Principle and Sphere Eversion, Proceedings
of the 12th ACM SIGPLAN International Conference on
Certified Programs and Proofs, 2023, url.

(We might even write another.)

e Interactive website (well worth a visit):

https://leanprover-community.github.io/sphere-eversion

e Previous talks:
— van Doorn CPP 2023
— van Doorn Lean in Lyon 2022

— Massot Lean in Lyon 2022


https://doi.org/10.1145/3573105.3575688
https://leanprover-community.github.io/sphere-eversion
https://www.youtube.com/watch?v=wCubc0t3xJY&list=PLyrlk8Xaylp6EB6XceHKB-UKBfmYYJAbH&index=15
https://www.youtube.com/watch?v=Evru5QHt-KU&list=PLlF-CfQhukNliKyDqb5rYKe-r9RbpQFZd&index=5
https://www.youtube.com/watch?v=QBLL48Z8gcg&list=PLlF-CfQhukNliKyDqb5rYKe-r9RbpQFZd&index=2

